Detection of Coliform Bacteria in Raw Milk Samples Collected from Industrial Cities of Pakistan

Coliform Bacteria in Raw Milk

Authors

  • Andleeb Aslam Microbial Biotechnology Laboratory, Institute of Zoology, University of the Punjab, Lahore, Pakistan
  • Javed Iqbal Qazi Microbial Biotechnology Laboratory, Institute of Zoology, University of the Punjab, Lahore, Pakistan
  • Ali Hasan Honeybee Research Garden, Institute of Zoology, University of the Punjab, Lahore, Pakistan
  • Muhammad Ahsan Raza Department of Zoology, Government Graduate College (Boys), Satellite town, Gujranwala, Pakistan

DOI:

https://doi.org/10.54393/fbt.v4i01.90

Keywords:

Coliforms, Heavy Metals, Antibiotic Resistance, Milk Quality, Health Status

Abstract

Antibiotics and heavy metals-resistant bacteria in livestock environments can result in economic losses and raise public health and environmental problems. There is a crisis in the world's access to and pipeline for antibiotics. Objective: To screen raw milk samples collected from three different industrial cities Gujranwala, Lahore, and Sheikhupura, situated in the province of Punjab, Pakistan. Methods: In this regard, a total of 26 samples were having 84 coliform strains. Separated coliform colonies were processed for Gram's staining, catalase, indole production, and Simmon's citrate and motility tests. Results: Metal resistance of bacterial strains was also checked and 39.5% and 45.23% of bacteria were found to be resistant to ZnCl2 1% and 0.5%. 69.045% and 77.38% bacteria were found to be resistant to CuSo4 salt solution1% and 0.5%. 17.85% and 27% bacteria were found to be resistant to Na2CrO4 salt solution1% and 0.5% respectively. 80% of bacteria were found to be resistant to Cefuroxime, 26.19% to Cephradine, 84.52% to Aztroeonam 41.67% to Erythromycin, 91.667% to Trimethoprim 89.28% to Lincomycins. Conclusions: The raw milk samples were not only contaminated with coliforms but the bacteria were also resistant to heavy metals and certain antibiotics which might be considered indicative of industrial and anthropogenic pollution. Cephradine, 84.52% to Aztroeonam 41.67% to Erythromycin, 91.667% to Trimethoprim 89.28% to Lincomycins. Conclusions: The raw milk samples were not only contaminated with coliforms but the bacteria were also resistant to heavy metals and certain antibiotics which might be considered indicative of industrial and anthropogenic pollution.

References

Bhatti SA, Khan MS, Muhammad Sarwar MS, Ehsan Ullah EU. Organizing milk competition in dairy animals: experience of a milk competition at University of Agriculture, Faisalabad, Pakistan. Pakistan Veterinary Journal. 2010; 30(4): 255-9. doi: 10.5555/20103310445.

Younus M, Abbas T, Zafar M, Raza S, Khan A, Saleem AH, Idrees MA, et al. Assessment of heavy metal contamination in raw milk for human consumption. South African Journal of Animal Science. 2016 Jun; 46(2): 166-9. doi: 10.4314/sajas.v46i2.7.

Afzal A, Mahmood MS, Hussain I, Akhtar M. Adulteration and microbiological quality of milk (a review). Pakistan Journal of Nutrition. 2011 Dec; 10(12): 1195-202. doi: 10.3923/pjn.2011.1195.1202

Argudín MA, Hoefer A, Butaye P. Heavy metal resistance in bacteria from animals. Research in Veterinary Science. 2019 Feb; 122: 132-47. doi: 10.1016/j.rvsc.2018.11.007.

Horn D, Miller M, Anderson S, Steele C. Microplastics are ubiquitous on California beaches and enter the coastal food web through consumption by Pacific mole crabs. Marine Pollution Bulletin. 2019 Feb; 139: 231-7. doi: 10.1016/j.marpolbul.2018.12.039.

Kaur I, Gupta A, Singh BP, Sharma S, Kumar A. Assessment of radon and potentially toxic metals in agricultural soils of Punjab, India. Microchemical Journal. 2019 May; 146: 444-54. doi: 10.1016/j.microc.2019.01.028.

Rehman UU, Khan S, Muhammad S. Associations of potentially toxic elements (PTEs) in drinking water and human biomarkers: a case study from five districts of Pakistan. Environmental Science and Pollution Research. 2018 Oct; 25(28): 27912-23. doi: 10.1007/s11356-018-2755-y.

Awasthi V, Bahman S, Thakur LK, Singh SK, Dua A, Ganguly S. Contaminants in milk and impact of heating: an assessment study. Indian Journal of Public Health. 2012 Jan; 56(1): 95-9. doi: 10.4103/0019-557X.96985.

Ward NI and Savage JM. Metal dispersion and transportational activities using food crops as biomonitors. Science of the Total Environment. 1994 May; 146: 309-19. doi: 10.1016/0048-9697(94)90251-8.

Chitmanat C and Traichaiyaporn S. Spatial and temporal variations of physical-chemical water quality and some heavy metals in water, sediments and fish of the Mae Kuang River, Northern Thailand. International Journal of Agriculture & Biology. 2010; 12: 816–20. doi: 10.5555/20103334333.

Burger J and Elbin S. Metal levels in eggs of waterbirds in the New York Harbor (USA): Trophic relationships and possible risk to human consumers. Journal of Toxicology and Environmental Health, Part A. 2015 Jan; 78(2): 78-91. doi: 10.1080/15287394.2014.941965.

Kar I, Mukhopadhayay SK, Patra AK, Pradhan S. Metal concentrations and histopathological changes in goats (Capra hircus) reared near an industrial area of West Bengal, India. Archives of Environmental Contamination and Toxicology. 2015 Jul; 69: 32-43. doi: 10.1007/s00244-015-0130-2.

Singh A, Sharma RK, Agrawal M, Marshall FM. Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food and Chemical Toxicology. 2010 Feb; 48(2): 611-9. doi: 10.1016/j.fct.2009.11.041.

Oyewale AT, Adesakin TA, Aduwo AI. Environmental impact of heavy metals from poultry waste discharged into the Olosuru stream, Ikire, southwestern Nigeria. Journal of Health and Pollution. 2019 Jun; 9(22): 190607. doi: 10.5696/2156-9614-9.22.190607.

Godziszewska J, Guzek D, Głąbski K, Wierzbicka A. Mobilna antybiotykooporność–o rozprzestrzenianiu się genów determinujących oporność bakterii poprzez produkty spożywcze. Postępy Higieny i Medycyny Doświadczalnej. 2016 Jul; 70: 803-10. doi: 10.5604/17322693.1209214.

García J, García-Galán MJ, Day JW, Boopathy R, White JR, Wallace S et al. A review of emerging organic contaminants (EOCs), antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs) in the environment: Increasing removal with wetlands and reducing environmental impacts. Bioresource Technology. 2020 Jul; 307: 123228. doi: 10.1016/j.biortech.2020.123228.

Wen X, Mi J, Wang Y, Ma B, Zou Y, Liao X et al. Occurrence and contamination profiles of antibiotic resistance genes from swine manure to receiving environments in Guangdong Province southern China. Ecotoxicology and Environmental Safety. 2019 May; 173: 96-102. doi: 10.1016/j.ecoenv.2019.02.023.

Oliver SP, Murinda SE, Jayarao BM. Impact of antibiotic use in adult dairy cows on antimicrobial resistance of veterinary and human pathogens: a comprehensive review. Foodborne Pathogens and Disease. 2011 Mar; 8(3): 337-55. doi: 10.1089/fpd.2010.0730.

Smith DL, Harris AD, Johnson JA, Silbergeld EK, Morris Jr JG. Animal antibiotic use has an early but important impact on the emergence of antibiotic resistance in human commensal bacteria. Proceedings of the National Academy of Sciences. 2002 Apr; 99(9): 6434-9. doi: 10.1073/pnas.082188899.

Arias CA and Murray BE. Antibiotic-resistant bugs in the 21st century—a clinical super-challenge. New England Journal of Medicine. 2009 Jan; 360(5): 439-43. doi: 10.1056/NEJMp0804651.

Weese JS, Giguère S, Guardabassi L, Morley PS, Papich M, Ricciuto DR et al. ACVIM consensus statement on therapeutic antimicrobial use in animals and antimicrobial resistance. Journal of Veterinary Internal Medicine. 2015 Mar; 29(2): 487-98. doi: 10.1111/jvim.12562.

Zycka-Krzesinska J, Boguslawska J, Aleksandrzak-Piekarczyk T, Jopek J, Bardowski JK. Identification and characterization of tetracycline resistance in Lactococcus lactis isolated from Polish raw milk and fermented artisanal products. International Journal of Food Microbiology. 2015 Oct; 211: 134-41. doi: 10.1016/j.ijfoodmicro.2015.07.009.

Skočková A, Bogdanovičová K, Koláčková I, Karpíšková R. Antimicrobial-resistant and extended-spectrum β-Lactamase–producing Escherichia coli in raw cow's milk. Journal of Food Protection. 2015 Jan; 78(1): 72-7. doi: 10.4315/0362-028X.JFP-14-250.

Gomi R, Matsuda T, Matsumura Y, Yamamoto M, Tanaka M, Ichiyama S et al. Whole-genome analysis of antimicrobial-resistant and extraintestinal pathogenic Escherichia coli in river water. Applied and Environmental Microbiology. 2017 Mar; 83(5): e02703-16. doi: 10.1128/AEM.02703-16.

Kaushik M, Khare N, Kumar S, Gulati P. High prevalence of antibiotic resistance and integrons in Escherichia coli isolated from urban river water, India. Microbial Drug Resistance. 2019 Apr; 25(3): 359-70. doi: 10.1089/mdr.2018.0194.

Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M et al. Diversity of the human intestinal microbial flora. Science. 2005 Jun; 308(5728): 1635-8. doi: 10.1126/science.1110591.

Harrigan WF and McCance MF. Laboratory Methods in Food and Dairy Microbiology (Revised Edition). 1976. Academic Press: London-New York-San Fransisco. doi: 10.1002/jobm.19780180316.

Jagals P, Jagals C, Bokako TC. The effect of container-biofilm on the microbiological quality of water used from plastic household containers. Journal of Water and Health. 2003 Sep; 1(3): 101-8. doi: 10.2166/wh.2003.0012.

Bali OS, Lajnef R, Felfoul I, Attia H, Ayadi MA. Detection of Escherichia coli in unpasteurized raw milk. International Journal of Agriculture and Food Science. 2013; 3(2): 53-5.

Wu X, Al Farraj DA, Rajaselvam J, Alkufeidy RM, Vijayaraghavan P, Alkubaisi NA et al. Characterization of biofilm formed by multidrug resistant Pseudomonas aeruginosa DC-17 isolated from dental caries. Saudi Journal of Biological Sciences. 2020 Nov; 27(11): 2955-60. doi: 10.1016/j.sjbs.2020.07.020.

Hsueh PR, Ko WC, Wu JJ, Lu JJ, Wang FD, Wu HY et al. Consensus statement on the adherence to Clinical and Laboratory Standards Institute (CLSI) Antimicrobial Susceptibility Testing Guidelines (CLSI-2010 and CLSI-2010-update) for Enterobacteriaceae in clinical microbiology laboratories in Taiwan. Journal of Microbiology, Immunology and Infection. 2010 Oct; 43(5): 452-5. doi: 10.1016/S1684-1182(10)60070-9.

Orregård M. Quality analysis of raw milk along the value chain of the informal milk market in Kiambu County, Kenya. [Doctoral Dissertation]. Swedish University of Agricultural Sciences; Uppsala, Sweden: 2013.

Hossain TJ, Alam MK, Sikdar D. Chemical and microbiological quality assessment of raw and processed liquid market milks of Bangladesh. Continental Journal of Food Science and Technology. 2011 Jul; 5(2): 6-17.

Sandholm M and Korhonen HJ. Antibacterial defence mechanisms of the udder. Markus S and Holm Al (eds). In: The Bovine Udder and Mastitis. 1995.

Mutukumira AN, Feresu SB, Narvhus JA, Abrahamsen RK. Chemical and microbiological quality of raw milk produced by smallholder farmers in Zimbabwe. Journal of Food Protection. 1996 Sep; 59(9): 984-7. doi: 10.4315/0362-028X-59.9.984.

Khan MT, Zinnah MA, Siddique MP, Rashid MH, Islam MA, Choudhury KA. Physical and microbial qualities of raw milk collected from Bangladesh agricultural university dairy farm and the surrounding villages. Bangladesh Journal of Veterinary Medicine. 2008; 6(2): 217-21. doi: 10.3329/bjvm.v6i2.2339.

Uddin MA, Motazzim-ul-Haque HM, Noor R. Isolation and identification of pathogenic Escherichia coli, Klebsiella spp. and Staphylococcus spp. in raw milk samples collected from different areas of Dhaka City, Bangladesh. Stamford Journal of Microbiology. 2011; 1(1): 19-23. doi: 10.3329/sjm.v1i1.9098.

Bonfoh B, Wasem A, Traore AN, Fane A, Spillmann H, Simbé CF et al. Microbiological quality of cows’ milk taken at different intervals from the udder to the selling point in Bamako (Mali). Food Control. 2003 Oct; 14(7): 495-500. doi: 10.1016/S0956-7135(02)00109-3.

Sraïri MT, Moudnib J, Rahho L, Hamama A. How do milking conditions affect the hygienic quality of raw milk? Case study from Moroccan dairy farms. Livestock research for rural development. 2006 Nov; 18(7): 1-9.

Salamończyk E, Guliński P, Senterkiewicz M. Wielkość dostaw, jakość i skład mleka surowego, skupowanego w latach 2006–2010 przez jeden z krajowych zakładów mleczarskich. Wiadomości Zootechniczne. 2013: 37-42.

Ruusunen M, Fredriksson-Ahomaa M, Hellström S, Revez J, Hänninen ML, Lindström M. Pathogenic bacteria in Finnish bulk tank milk. Foodborne Pathogens and Disease. 2013 Feb; 10(2): 99-106. doi: 10.1089/fpd.2012.1284.

Elmoslemany AM, Keefe GP, Dohoo IR, Wichtel JJ, Stryhn H, Dingwell RT. The association between bulk tank milk analysis for raw milk quality and on-farm management practices. Preventive Veterinary Medicine. 2010 Jun; 95(1-2): 32-40. doi: 10.1016/j.prevetmed.2010.03.007.

Bayemi PH, Webb EC, Manjeli Y, Naoussi P. Economic opportunity survey of small scale dairy farms of the north west province of Cameroon. Tropical Animal Health and Production. 2007 Dec; 39: 583-92. doi: 10.1007/s11250-007-9063-8.

Gharekhani J, Yakhchali M, Afshari A, Adabi M. Herd-level contamination of Neospora caninum, Toxoplasma gondii and Brucella in milk of Iranian dairy farms. Food Microbiology. 2021 Dec; 100: 103873. doi: 10.1016/j.fm.2021.103873.

Gemechu T, Beyene F, Eshetu M. Physical and chemical quality of raw cows milk produced and marketed in Shashemene Town, Southern Ethiopia. ISABB Journal of Food and Agricultural Sciences. 2015 Mar; 5(2): 7-13.

Martin NH, Trmčić A, Hsieh TH, Boor KJ, Wiedmann M. The evolving role of coliforms as indicators of unhygienic processing conditions in dairy foods. Frontiers in Microbiology. 2016 Sep; 7: 220072. doi: 10.3389/fmicb.2016.01549.

Reta MA and Addis AH. Microbiological quality assessment of raw and pasteurized milk. International Journal of Food Science and Microbiology. 2015; 2(6): 087-91.

Bonyadian M, Moshtaghi H, Taheri MA. Molecular characterization and antibiotic resistance of enterotoxigenic and entero-aggregative Escherichia coli isolated from raw milk and unpasteurized cheeses. Veterinary Research Forum. 2014; 5(1): 29.

Martinez JL. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environmental Pollution. 2009 Nov; 157(11): 2893-902. doi: 10.1016/j.envpol.2009.05.051.

Araque M, Nieves B, Lauretti L, Rossolini GM. Molecular basis of extended-spectrum β-lactamase production in nosocomial isolates of Klebsiella pneumoniae from Mérida, Venezuela. International Journal of Antimicrobial Agents. 2000 Jun; 15(1): 37-42. doi: 10.1016/S0924-8579(99)00168-5.

Murdoch DA, Spillman I, Kabare P. Antibiotic availability and multiresistant coliforms in a rural Ugandan hospital. The Journal of Tropical Medicine and Hygiene. 1995 Feb; 98(1): 25-8.

Bagré TS, Sambe-Ba B, Ibrahim HB, Tchamba GB, Dembele R, Wane AA et al. Isolation and characterization of enteropathogenic and enterotoxinogenic Escherichia coli from dairy products consumed in Burkina Faso. African Journal of Microbiology Research. 2017 Apr; 11(13): 537-45. doi: 10.5897/AJMR2017.8485.

Nováková I, Kačániová M, Arpášová H, Haščík P, Kunová S, Čuboň J. Antibiotic resistance of enterococci and coliform bacteria in dairy products from commercial farms. Scientific Papers Animal Science and Biotechnologies. 2010; 43(1): 307.

Sangeetha A, Balakrishnan S, Venkatesh A, Manimaran K, Dhanalakshmi M, Sivakumar T. Coliform mastitis in dairy cows in Thanjavur region, Tamil Nadu. The Pharma Innovation Journal. 2020 Apr; 9(5): 370-3.

Davidson PM, Roth LA, Gambrel-Lenarz SA. Chapter 7 Coliform and other indicator bacteria. Wehr HM and Frank JF (eds). In: Standard Methods for the Examination of Dairy Products. APHA Press: 2012. doi: 10.2105/9780875530024ch07.

Gaglio R, Francesca N, Di Gerlando R, Mahony J, De Martino S, Stucchi C et al. Enteric bacteria of food ice and their survival in alcoholic beverages and soft drinks. Food Microbiology. 2017 Oct; 67: 17-22. doi: 10.1016/j.fm.2017.04.020.

Warpala IW, Widiyanti NL, Suryanti IA, Wibawa IW. Diversity genera of coliforms bacteria in Buyan Lake. In: 3rd International Conference on Innovative Research Across Disciplines (ICIRAD 2019). 2020 Jan; pp. 24-31. Atlantis Press. doi: 10.2991/assehr.k.200115.005.

Ali AA and Abdelgadir WS. Incidence of Escherichia coli in raw cow’s milk in Khartoum State. British Journal of Dairy Sciences. 2011 Nov; 2(1): 23-6.

Cowan ST and Steel KJ. Manual for the identification of medical bacteria. 1965.

Alam MK, Sarwar N, Akther S, Ahmad M, Biswas PK. Isolation and molecular characterization of shigatoxigenic O157 and Non-O157 Escherichia coli in Raw Milk marketed in Chittagong, Bangladesh. Asian Journal of Dairy and Food Research. 2021; 40(1): 1-7. doi: 10.18805/ajdfr.DR-178.

Matin AB, Akhter SU, Badsha MR. Microbiological quality assessment of powder milk at Dhaka Metropolitan area. Journal of Advances in Food Science & Technology. 2019 Sep; 6(2): 88-94.

Downloads

Published

2024-03-31
CITATION
DOI: 10.54393/fbt.v4i01.90
Published: 2024-03-31

How to Cite

Aslam, A., Qazi, J. I., Hasan, A., & Raza, M. A. (2024). Detection of Coliform Bacteria in Raw Milk Samples Collected from Industrial Cities of Pakistan: Coliform Bacteria in Raw Milk. Futuristic Biotechnology, 4(01), 19–27. https://doi.org/10.54393/fbt.v4i01.90

Plaudit