Exploring Thermostable Lipases: Molecular Innovations and Expanding Industrial Horizons

Exploring Thermostable Lipases: Molecular Innovations

Authors

  • Tehmina Bashir Department of Botany, Government College University, Lahore, Pakistan
  • . Alamgir Faculty of Allied Health Sciences, Sohail University, Karachi, Pakistan
  • Syeda Amna Batool Department of Botany, University of Narowal, Narowal, Pakistan
  • Tahir Hussain Faculty of Allied Health Sciences, Hamdard Institute of Management Sciences, Karachi, Pakistan
  • . Washdev Chughtai Laboratory, Karachi, Pakistan
  • Iram Rafique Faculty of Allied Health Sciences, Karachi Institute of Nursing Allied Health Sciences, Karachi, Pakistan

DOI:

https://doi.org/10.54393/fbt.v5i2.183

Keywords:

Thermo-Stable Lipases, Commercial Uses, Characterization, Enzyme Engineering, Biocatalysts

Abstract

Thermostable lipases are crucial biocatalysts valued for their stability and functionality in both aqueous and non-aqueous environments, enabling efficient catalysis at elevated temperatures. These enzymes, derived from both wild-type and genetically engineered strains, exhibit unique properties that make them indispensable across diverse industrial sectors. Despite their potential, challenges remain in optimizing their production, purification, and characterization to meet specific application requirements ranging from highly purified pharmaceutical formulations to less refined industrial uses. This review consolidates recent advances in the isolation, engineering, and detailed characterization of thermostable lipases, highlighting their substrate specificity, catalytic efficiency, enantioselectivity, and tolerance to harsh conditions. Emphasis is placed on emerging molecular innovations and metagenomic approaches for discovering novel enzymes with enhanced industrial applicability. By bridging fundamental insights with practical applications, this overview aims to guide future research and development efforts in harnessing thermostable lipases for expanding biotechnological horizons.

References

Hamdan SH, Maiangwa J, Ali MS, Normi YM, Sabri S, Leow TC. Thermostable Lipases and Their Dynamics of Improved Enzymatic Properties. Applied Microbiology and Biotechnology. 2021 Oct; 105(19): 7069-94. doi: 10.1007/s00253-021-11520-7.

Chandra P, Enespa, Singh R, Arora PK. Microbial Lipases and Their Industrial Applications: A Comprehensive Review. Microbial Cell Factories. 2020 Aug; 19(1): 169. doi: 10.1186/s12934-020-01428-8.

Mehta A, Guleria S, Sharma R, Gupta R. The Lipases and Their Applications with Emphasis on Food Industry. In Microbial Biotechnology in Food and Health. 2021 Jan: 143-164. doi: 10.1016/B978-0-12-819813-1.00006-2.

Scully SM and Orlygsson J. Thermostable Enzymes and Their Applications. In Thermophilic Anaerobes: Phylogeny, Physiology and Biotechnological Applications. Cham: Springer International Publishing. 2023 Nov: 155-186. doi: 10.1007/978-3-031-41720-7_6.

Hussian CH and Leong WY. Thermostable Enzyme Research Advances: A Bibliometric Analysis. Journal of Genetic Engineering and Biotechnology. 2023 Dec; 21(1): 37. doi: 10.1186/s43141-023-00494-w.

Jaiswal N and Jaiswal P. Thermostable α-amylases and Laccases: Paving the Way for Sustainable Industrial Applications. Processes. 2024 Jun; 12(7): 1341. doi: 10.3390/pr12071341.

Ehtiati S and Khatami SH. Lipase: Recombinant Production Methods, Origins, and Industrial Uses. Biotechnology and Applied Biochemistry. 2025 May. doi: 10.1002/bab.2781.

Zhu C, Chen Y, Isupov MN, Littlechild JA, Sun L, Liu X et al. Structural Insights into A Novel Esterase from the East Pacific Rise and Its Improved Thermostability by A Semirational Design. Journal of Agricultural and Food Chemistry. 2021 Jan; 69(3): 1079-90. doi: 10.1021/acs.jafc.0c06338.

Abdelaziz AA, Abo-Kamar AM, Elkotb ES, Al-Madboly LA. Microbial Lipases: Advances in Production, Purification, Biochemical Characterization, and Multifaceted Applications in Industry and Medicine. Microbial Cell Factories. 2025 Feb; 24(1): 40. doi: 10.1186/s12934-025-02664-6.

Verma S, Meghwanshi GK, Kumar R. Current Perspectives for Microbial Lipases from Extremophiles and Metagenomics. Biochimie. 2021 Mar; 182: 23-36. doi: 10.1016/j.biochi.2020.12.027.

Sharma D, Bhardwaj KK, Gupta R. Immobilization and Applications of Esterases. Biocatalysis and Biotransformation. 2022 May; 40(3): 153-68. doi: 10.1080/10242422.2021.2013825.

Lupo A, Haenni M, Madec JY. Antimicrobial Resistance in Acinetobacter Spp. and Pseudomonas Spp. Microbiology Spectrum. 2018 Jun; 6(3): 10-128. doi: 10.1128/microbiolspec.ARBA-0007-2017.

Seth A. 21 Thermophilic Microbial. Handbook of Aquatic Microbiology. 2024 Sep: 293. doi: 10.1201/9781003408543-21.

Bashir T, Majeed H, Iftikhar T. Isolation and Screening of Thermophilic Bacteria and Its Subsequent Evaluation for Lipases Production. Pakistan Journal of Botany. 2024 Apr; 56(2): 759-64. doi: 10.30848/PJB2024-2(3).

Masomian M, Rahman RN, Salleh AB, Basri M. A Unique Thermostable and Organic Solvent Tolerant Lipase from Newly Isolated Aneurinibacillus Thermoaerophilus Strain HZ: Physical Factor Studies. World Journal of Microbiology and Biotechnology. 2010 Sep; 26(9): 1693-701. doi: 10.1007/s11274-010-0347-1.

Peeters C, Cooper VS, Hatcher PJ, Verheyde B, Carlier A, Vandamme P. Comparative Genomics of Burkholderia Multivorans, A Ubiquitous Pathogen with A Highly Conserved Genomic Structure. PLOS One. 2017 Apr; 12(4): e0176191. doi: 10.1371/journal.pone.0176191.

Carvalho-Gonçalves LC, Gorlach-Lira K. Lipases and Biosurfactants Production by the Newly Isolated Burkholderia Sp. Brazilian Journal of Biological Sciences. 2018 Apr; 5(9): 57-68. doi: 10.21472/bjbs.050906.

Singh B, Bulusu G, Mitra A. Understanding the Thermostability and Activity of Bacillus Subtilis Lipase Mutants: Insights from Molecular Dynamics Simulations. The Journal of Physical Chemistry B. 2015 Jan; 119(2): 392-409. doi: 10.1021/jp5079554.

Konuray G and Erginkaya Z. Potential Use of Bacillus Coagulans in the Food Industry. Foods. 2018 Jun; 7(6): 92. doi: 10.3390/foods7060092.

Balan A. Production, Cloning and Characterization of Thermostable Lipase from Geobacillus Thermodenitrificans IBRL-nra (Doctoral dissertation, Universiti Sains Malaysia). 2015.

Manco G, Adinolfi E, Pisani FM, Ottolina G, Carrea G, Rossi M. Overexpression and Properties of a New Thermophilic and Thermostable Esterase from Bacillus Acidocaldarius with Sequence Similarity to Hormone-Sensitive Lipase Subfamily. Biochemical Journal. 1998 May; 332(1): 203-12. doi: 10.1042/bj3320203.

Nawani N, Dosanjh NS, Kaur J. A Novel Thermostable Lipase from A Thermophilic Bacillus Sp.: Characterization and Esterification Studies. Biotechnology Letters. 1998 Oct; 20(10): 997-1000. doi: 10.1023/A:1005430215849.

Verma DK, Al-Sahlany ST, Niamah AK, Thakur M, Shah N, Singh S et al. Recent Trends in Microbial Flavour Compounds: A Review on Chemistry, Synthesis Mechanism and Their Application in Food. Saudi Journal of Biological Sciences. 2022 Mar; 29(3): 1565-76. doi: 10.1016/j.sjbs.2021.11.010.

McPherson A, Larson SB, Kalasky A. The Crystal Structures of Thermomyces (Humicola) Lanuginosa Lipase in Complex with Enzymatic Reactants. Current Enzyme Inhibition. 2020 Dec; 16(3): 199-213. doi: 10.2174/1573408016999200511090910.

Abdel-Fattah YR, Gaballa AA. Identification and Over-Expression of A Thermostable Lipase from Geobacillus Thermoleovorans Toshki in Escherichia coli. Microbiological Research. 2008 Jan; 163(1): 13-20. doi: 10.1016/j.micres.2006.02.004.

Rathi P, Bradoo S, Saxena RK, Gupta R. A Hyper-Thermostable, Alkaline Lipase from Pseudomonas Sp. with the Property of Thermal Activation. Biotechnology Letters. 2000 Mar; 22(6): 495-8. doi: 10.1023/A:1005604617440.

Kulkarni N and Gadre RV. A Novel Alkaline, Thermostable, Protease-Free Lipase from Pseudomonas sp. Biotechnology Letters. 1999 Oct; 21(10): 897-9. doi: 10.1023/A:1005591009596.

Hasan F, Shah AA, Hameed A. Industrial Applications of Microbial Lipases. Enzyme and Microbial Technology. 2006 Jun; 39(2): 235-51. doi: 10.1016/j.enzmictec.2005.10.016.

Ikeda M and Clark DS. Molecular Cloning of Extremely Thermostable Esterase Gene from Hyperthermophilic Archaeon Pyrococcus Furiosus in Escherichia coli. Biotechnology and Bioengineering. 1998 Mar; 57(5): 624-9. doi: 10.1002/(SICI)1097-0290(19980305)57:5<624::AID-BIT15>3.0.CO;2-B.

Sun SY, Xu Y, Wang D. Novel Minor Lipase from Rhizopus Chinensis During Solid-State Fermentation: Biochemical Characterization and Its Esterification Potential for Ester Synthesis. Bioresource Technology. 2009 May; 100(9): 2607-12. doi: 10.1016/j.biortech.2008.11.006.

Ando S, Ishida H, Kosugi Y, Ishikawa K. Hyperthermostable Endoglucanase from Pyrococcus Horikoshii. Applied and Environmental Microbiology. 2002 Jan; 68(1): 430-3. doi: 10.1128/AEM.68.1.430-433.2002.

Iyer PV and Ananthanarayan L. Enzyme Stability and Stabilization—Aqueous and Non-Aqueous Environment. Process Biochemistry. 2008 Oct; 43(10): 1019-32. doi: 10.1016/j.procbio.2008.06.004.

Kumar R, Sharma A, Kumar A, Singh D. Lipase from Bacillus Pumilus RK31: Production, Purification and Some Properties. World Applied Sciences Journal. 2012; 16(7): 940-8.

Royter M, Schmidt M, Elend C, Höbenreich H, Schäfer T, Bornscheuer UT et al. Thermostable Lipases from the Extreme Thermophilic Anaerobic Bacteria Thermoanaerobacter Thermohydrosulfuricus SOL1 and Caldanaerobacter Subterraneus Subsp. Tengcongensis. Extremophiles. 2009 Sep; 13(5): 769-83. doi: 10.1007/s00792-009-0265-z.

Kanwar SS, Ghazi IA, Chimni SS, Joshi GK, Rao GV, Kaushal RK et al. Purification and Properties of a Novel Extra-Cellular Thermotolerant Metallolipase of Bacillus Coagulans MTCC-6375 Isolate. Protein Expression and Purification. 2006 Apr; 46(2): 421-8. doi: 10.1016/j.pep.2005.10.007.

Shariff FM, Rahman RN, Basri M, Salleh AB. A Newly Isolated Thermostable Lipase from Bacillus sp. International Journal of Molecular Sciences. 2011 May; 12(5): 2917-34. doi: 10.3390/ijms12052917.

Li QQ, Zhu ZR, Liu QG, An YT, Wang YX, Zhang SB et al. Characterization of A Novel Thermostable Alkaline Lipase Derived from A Compost Metagenomic Library and Its Potential Application in the Detergent Industry. Frontiers in Microbiology. 2022 Dec; 13: 1088581. doi: 10.3389/fmicb.2022.1088581.

Vivek K, Sandhia GS, Subramaniyan SJ. Extremophilic Lipases for Industrial Applications: A General Review. Biotechnology Advances. 2022 Nov; 60: 108002. doi: 10.1016/j.biotechadv.2022.108002.

Rajak S, Ali SR, Pal B, Chakraborty SS. A Statistical Insight to Exploration of Medicinal Wastewater as A Source of Thermostable Lipase-Producing Microorganisms. PLOS One. 2025 Feb; 20(2): e0319023. doi: 10.1371/journal.pone.0319023.

Cumming H and Marshall SN. Lipase-Catalyzed Synthesis of Mono-And Di-Acyl Esters of Glyceryl Caffeate in Propylene Carbonate and Their Antioxidant Properties in Tuna Oil. Journal of Biotechnology. 2021 Jan; 325: 217-25. doi: 10.1016/j.jbiotec.2020.10.021.

Reyes-Reyes AL, Valero Barranco F, Sandoval G. Recent Advances in Lipases and Their Applications in the Food and Nutraceutical Industry. Catalysts. 2022 Aug; 12(9): 960. doi: 10.3390/catal12090960.

Leykun S, Johansson E, Vetukuri RR, Ceresino EB, Gessesse A. A Thermostable Organic Solvent-Tolerant Lipase from Brevibacillus Sp.: Production and Integrated Downstream Processing Using an Alcohol-Salt-Based Aqueous Two-Phase System. Frontiers in Microbiology. 2023 Oct; 14: 1270270. doi: 10.3389/fmicb.2023.1270270.

Ali S, Khan SA, Hamayun M, Lee IJ. The Recent Advances in the Utility of Microbial Lipases: A Review. Microorganisms. 2023 Feb; 11(2): 510. doi: 10.3390/microorganisms11020510.

Darbandi A, Elahi Z, Dadgar-Zankbar L, Ghasemi F, Kakavandi N, Jafari S et al. Application of Microbial Enzymes in Medicine and Industry: Current Status and Future Perspectives. Future Microbiology. 2024 Nov; 19(16): 1419-37. doi: 10.1080/17460913.2024.2398337.

Zhao J, Ma M, Zeng Z, Wan D, Yan X, Xia J et al. Production, Purification, Properties and Current Perspectives for Modification and Application 0f Microbial Lipases. Preparative Biochemistry and Biotechnology. 2024 Sep; 54(8): 1001-16. doi: 10.1080/10826068.2024.2323196.

García‐Silvera EE, Martínez‐Morales F, Bertrand B, Morales‐Guzmán D, Rosas‐Galván NS, León‐Rodríguez R et al. Production and Application of A Thermostable Lipase from Serratia Marcescens in Detergent Formulation and Biodiesel Production. Biotechnology and Applied Biochemistry. 2018 Mar; 65(2): 156-72. doi: 10.1002/bab.1565

Ilesanmi OI, Adekunle AE, Omolaiye JA, Olorode EM, Ogunkanmi AL. Isolation, Optimization and Molecular Characterization of Lipase Producing Bacteria from Contaminated Soil. Scientific African. 2020 Jul; 8: e00279. doi: 10.1016/j.sciaf.2020.e00279.

Rozi MF, Rahman RN, Leow AT, Ali MS. Ancestral Sequence Reconstruction of Ancient Lipase from Family I. 3 Bacterial Lipolytic Enzymes. Molecular Phylogenetics and Evolution. 2022 Mar; 168: 107381. doi: 10.1016/j.ympev.2021.107381.

Salihu A and Alam MZ. Thermostable lipases: An Overview of Production, Purification and Characterization. Biosciences Biotechnology Research Asia. 2014; 11(3): 1095-107. doi: 10.13005/bbra/1494.

Mazhar H, Ullah I, Ali U, Abbas N, Hussain Z, Ali SS et al. Optimization of Low-Cost Solid-State Fermentation Media for the Production of Thermostable Lipases Using Agro-Industrial Residues as Substrate in Culture of Bacillus Amyloliquefaciens. Biocatalysis and Agricultural Biotechnology. 2023 Jan; 47: 102559. doi: 10.1016/j.bcab.2022.102559.

Downloads

Published

2025-06-30
CITATION
DOI: 10.54393/fbt.v5i2.183
Published: 2025-06-30

How to Cite

Bashir, T., Alamgir, ., Batool, S. A., Hussain, T., Washdev, ., & Rafique, I. (2025). Exploring Thermostable Lipases: Molecular Innovations and Expanding Industrial Horizons: Exploring Thermostable Lipases: Molecular Innovations . Futuristic Biotechnology, 5(2), 28–35. https://doi.org/10.54393/fbt.v5i2.183

Issue

Section

Review Articles

Plaudit