Next-Generation CRISPR Biotechnology for Pakistan: AI-Driven, Climate-Resilient Super Crops and the Future of Food Security
Next-Generation CRISPR Biotechnology for Pakistan: AI-Driven Super Crops
DOI:
https://doi.org/10.54393/fbt.v5i3.189Keywords:
CRISPR, Crop Improvement, Climate Resilience, Gene Editing, Food Security, Sustainable AgricultureAbstract
Climate change poses a significant threat to Pakistan’s agriculture, with projections indicating 10–25% yield losses in staple crops by 2050. Frequent floods, prolonged droughts, and pest infestations have already reduced wheat and rice production by up to 30%, exposing the limitations of traditional breeding and genetically modified crops. CRISPR-Cas9 genome editing, when combined with artificial intelligence (AI), offers a faster and more precise route to developing climate-resilient varieties suited to Pakistan’s diverse agroecosystems. A review of recent studies highlights key advances, including AI-assisted sgRNA design, which enhances editing efficiency by 30–50%, and CRISPR-modified wheat and rice lines that show 20–30% improved stress tolerance. Yet, barriers such as complex polyploid genomes, limited genomic resources, and outdated biosafety policies hinder progress. Addressing these challenges through policy reform, capacity-building, and technology integration could transform Pakistan’s agriculture, aligning directly with Sustainable Development Goals on Zero Hunger and Climate Action.
References
Germanwatch. Global Climate Risk Index. 2025. Available at: https://www.germanwatch.org/en/cri.
Pakistan Agricultural Research Council (PARC). Climate-Smart Agriculture: National Adaptation Plan for Pakistan. Government of Pakistan. 2023.
Zafar Y. Development of Agriculture Biotechnology in Pakistan. Journal of Association of Official Analytical Chemists International. 2007 Sep; 90(5): 1500-7. doi: 10.1093/jaoac/90.5.1500.
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science. 2012 Aug; 337(6096): 816-21. doi: 10.1126/science.1225829.
Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM et al. Search-and-Replace Genome Editing without Double-Strand Breaks or Donor DNA. Nature. 2019 Dec; 576(7785): 149-57. doi: 10.1038/s41586-019-1711-4.
Gallego-Bartolomé J, Gardiner J, Liu W, Papikian A, Ghoshal B, Kuo HY et al. Targeted DNA Demethylation of the Arabidopsis Genome Using the Human TET1 Catalytic Domain. Proceedings of the National Academy of Sciences. 2018 Feb; 115(9): E2125-34. doi: 10.1073/pnas.1716945115.
Aziz A. Climate Change: A Growing Challenge for Food Security in Pakistan. Social Science Review Archives. 2025 Feb; 3(1): 1390-402. doi: 10.70670/sra.v3i1.442.
Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey MD et al. Speed Breeding Is a Powerful Tool to Accelerate Crop Research and Breeding. Nature Plants. 2018 Jan; 4(1): 23-9. doi: 10.1038/s41477-017-0083-8.
Chen F, Chen L, Yan Z, Xu J, Feng L, He N et al. Recent Advances of CRISPR-Based Genome Editing for Enhancing Staple Crops. Frontiers in Plant Science. 2024 Sep; 15: 1478398. doi: 10.3389/fpls.2024.1478398.
Khan R and Sharma P. AI-Enabled Smart Irrigation for Climate-Resilient Agriculture. In SHS Web of Conferences. 2025; 216: 01005. doi: 10.1051/shsconf/202521601005.
Chavhan RL, Jaybhaye SG, Hinge VR, Deshmukh AS, Shaikh US, Jadhav PK et al. Emerging Applications of Gene Editing Technologies for the Development of Climate-Resilient Crops. Frontiers in Genome Editing. 2025 Mar; 7: 1524767. doi: 10.3389/fgeed.2025.1524767.
Titirmare S, Margal PB, Gupta S, Kumar D. AI-Powered Predictive Analytics for Crop Yield Optimization. In Agriculture 4.0. 2024: 89-110. doi: 10.1201/9781003570219-5.
Ahmad S and Hameed MA. Harnessing CRISPR-Cas9 for Advancing Sustainable Agriculture: Precision Genome Editing to Develop Climate-Resilient and High-Yielding Crops. Biosciences Reports. 2024 Dec; 1(02): 65-81.
Kaur N, Qadir M, Francis DV, Alok A, Tiwari S, Ahmed ZF. CRISPR/Cas9: A Sustainable Technology to Enhance Climate Resilience in Major Staple Crops. Frontiers in Genome Editing. 2025 Mar; 7: 1533197. doi: 10.3389/fgeed.2025.1533197.
Chuai G, Ma H, Yan J, Chen M, Hong N, Xue D et al. Deep-CRISPR: Optimized CRISPR Guide RNA Design by Deep Learning. Genome Biology. 2018 Jun; 19(1): 80. doi: 10.1186/s13059-018-1459-4.
Koonin EV, Makarova KS, Zhang F. Diversity, Classification and Evolution of CRISPR-Cas Systems. Current Opinion in Microbiology. 2017 Jun; 37: 67-78. doi: 10.1016/j.mib.2017.05.008.
Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P et al. Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. cell. 2015 Oct; 163(3): 759-71. doi: 10.1016/j.cell.2015.09.038.
Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ et al. RNA Targeting with CRISPR–Cas13. Nature. 2017 Oct; 550(7675): 280-4. doi: 10.1038/nature24049.
Hillary VE and Ceasar SA. A Review On the Mechanism and Applications of CRISPR/Cas9/Cas12/Cas13/Cas14 Proteins Utilized for Genome Engineering. Molecular Biotechnology. 2023 Mar; 65(3): 311-25. doi: 10.1007/s12033-022-00567-0.
Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N et al. Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA. Cell. 2014 Feb; 156(5): 935-49. doi: 10.1016/j.cell.2014.02.001.
Fonfara I, Richter H, Bratovič M, Le Rhun A, Charpentier E. The CRISPR-Associated DNA-Cleaving Enzyme Cpf1 Also Processes Precursor CRISPR RNA. Nature. 2016 Apr; 532(7600): 517-21. doi: 10.1038/nature17945.
Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F. Multiplexed and Portable Nucleic Acid Detection Platform with Cas13, Cas12a, and Csm6. Science. 2018 Apr; 360(6387): 439-44. doi: 10.1126/science.aaq0179.
Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J et al. Nucleic Acid Detection with CRISPR-Cas13a/C2c2. Science. 2017 Apr; 356(6336): 438-42. doi: 10.1126/science.aam9321.
Anders C, Niewoehner O, Duerst A, Jinek M. Structural Basis of PAM-Dependent Target DNA Recognition by the Cas9 Endonuclease. Nature. 2014 Sep; 513(7519): 569-73. doi: 10.1038/nature13579.
Smargon AA, Cox DB, Pyzocha NK, Zheng K, Slaymaker IM, Gootenberg JS et al. Cas13b is a Type VI-B CRISPR-Associated RNA-Guided Rnase Differentially Regulated by Accessory Proteins Csx27 and Csx28. Molecular Cell. 2017 Feb; 65(4): 618-30. doi: 10.1016/j.molcel.2016.12.023.
Rahim AA, Uzair M, Rehman N, Fiaz S, Attia KA, Abushady AM et al. CRISPR/Cas9 Mediated Tarpk1 Root Architecture Gene Mutagenesis Confers Enhanced Wheat Yield. Journal of King Saud University-Science. 2024 Feb; 36(2): 103063. doi: 10.1016/j.jksus.2023.103063.
Protocol C. Cartagena Protocol on Biosafety to the Convention on Biological Diversity. In the secretariat of the Convention on Biological Diversity, Montreal, QC. 2000.
Government of Pakistan. Pakistan Environmental Protection Agency (Ministry of Climate Change & Environmental Coordination). Pakistan Biosafety Guidelines. 2024 Feb.
DBT India. Guidelines for Safety Assessment of Genome Edited Plants. Department of Biotechnology, Ministry of Science and Technology, Government of India. 2022. Retrieved from: https://dbtindia.gov.in.
Majumder S, Datta K, Datta SK. Rice Biofortification: High Iron, Zinc, And Vitamin-A to Fight Against “Hidden Hunger”. Agronomy. 2019 Nov; 9(12): 803. doi: 10.3390/agronomy9120803.
Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G et al. Improving the Nutritional Value of Golden Rice Through Increased Pro-Vitamin A Content. Nature Biotechnology. 2005 Apr; 23(4): 482-7. doi: 10.1038/nbt1082.
Singh SP, Gruissem W, Bhullar NK. Single Genetic Locus Improvement of Iron, Zinc and Β-Carotene Content in Rice Grains. Scientific Reports. 2017 Jul; 7(1): 6883. doi: 10.1038/s41598-017-07198-5.
Karmakar A, Bhattacharya S, Sengupta S, Ali N, Sarkar SN, Datta K et al. RNAi-Mediated Silencing of ITPK Gene Reduces Phytic Acid Content, Alters Transcripts of Phytic Acid Biosynthetic Genes, and Modulates Mineral Distribution in Rice Seeds. Rice Science. 2020 Jul; 27(4): 315-28. doi: 10.1016/j.rsci.2020.05.007.
Riaz M, Yasmeen E, Saleem B, Hameed MK, Saeed Almheiri MT et al. Evolution of Agricultural Biotechnology Is the Paradigm Shift in Crop Resilience and Development: A Review. Frontiers in Plant Science. 2025 Jun; 16: 1585826. doi: 10.3389/fpls.2025.1585826.
Mackon E, Mackon GC, Guo Y, Ma Y, Yao Y, Liu P. Development and Application of CRISPR/Cas9 to Improve Anthocyanin Pigmentation in Plants: Opportunities and Perspectives. Plant Science. 2023 Aug; 333: 111746. doi: 10.1016/j.plantsci.2023.111746.
Moreno-Mateos MA, Vejnar CE, Beaudoin JD, Fernandez JP, Mis EK, Khokha MK et al. CRISPR Scan: Designing Highly Efficient SgRNAs for CRISPR-Cas9 Targeting in Vivo. Nature Methods. 2015 Oct; 12(10): 982-8. doi: 10.1038/nmeth.3543.
Xiang X, Corsi GI, Anthon C, Qu K, Pan X, Liang X et al. Enhancing CRISPR-Cas9 gRNA Efficiency Prediction by Data Integration and Deep Learning. Nature Communications. 2021 May; 12(1): 3238. doi: 10.1038/s41467-021-23576-0.
Wessels HH, Stirn A, Méndez-Mancilla A, Kim EJ, Hart SK, Knowles DA et al. Prediction of on-Target and Off-Target Activity of CRISPR–Cas13d Guide RNAs Using Deep Learning. Nature Biotechnology. 2024 Apr; 42(4): 628-37. doi: 10.1038/s41587-023-01830-8.
Wang D, Zhang C, Wang B, Li B, Wang Q, Liu D et al. Optimized CRISPR Guide RNA Design for Two High-Fidelity Cas9 Variants by Deep Learning. Nature Communications. 2019 Sep; 10(1): 4284. doi: 10.1038/s41467-019-12281-8.
Ray DK, Mueller ND, West PC, Foley JA. Yield Trends Are Insufficient to Double Global Crop Production by 2050. Plos One. 2013 Jun; 8(6): e66428. doi: 10.1371/journal.pone.0066428.
Simmons CR, Lafitte HR, Reimann KS, Brugière N, Roesler K, Albertsen MC et al. Successes and Insights of an Industry Biotech Program to Enhance Maize Agronomic Traits. Plant Science. 2021 Jun; 307: 110899. doi: 10.1016/j.plantsci.2021.110899.
Khan MH, Wang S, Wang J, Ahmar S, Saeed S, Khan SU et al. Applications of Artificial Intelligence in Climate-Resilient Smart-Crop Breeding. International Journal of Molecular Sciences. 2022 Sep; 23(19): 11156. doi: 10.3390/ijms231911156.
Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M et al. ARGOS 8 Variants Generated by CRISPR‐Cas9 Improve Maize Grain Yield Under Field Drought Stress Conditions. Plant Biotechnology Journal. 2017 Feb; 15(2): 207-16. doi: 10.1111/pbi.12603.
Rehman A, Rasool G, Ullah A, Arshad N, Noor H, Jan A et al. Phenotypic and Molecular Confirmation of Maize (Zea Mays L.) Genotypes for Drought Tolerance at Seedling Stage. Pure and Applied Biology. 2023 Sep; 12(4): 1548-55. doi: 10.19045/bspab.2023.120156.
Ismail A, Saleem MA, Shehzad A, Iqbal A, Khan PA, Rehman WU et al. The Response of Maize to Combined Application of Nitrogen and Phosphorous Fertilizers in the Semi-Arid Conditions of Faisalabad. Journal of Agriculture and Environment for International Development. 2024 Jun; 118(1): 93-110. doi: 10.36253/jaeid-12340.
Manzoor D, Kaleri AA, Rehmani U, Wagan GH, Ahmed Z, Majeedano AQ et al. Comparative Performance of Maize (Zea Mays L.) Varieties Under Nitrogen Levels Tactics for Improved Crop Yield and Quality in Chhamogarh Valley District Gilgit, Pakistan. Insights-Journal of Life and Social Sciences. Health and Research Insights. 2025; 3(2): 49-56. doi: 10.71000/j1fr2313.
Guo C, Ma X, Gao F, Guo Y. Off-target Effects in CRISPR/Cas9 Gene Editing. Frontiers in Bioengineering and Biotechnology. 2023 Mar; 11: 1143157. doi: 10.3389/fbioe.2023.1143157.
Kalinin AA, Higgins GA, Reamaroon N, Soroushmehr S, Allyn-Feuer A, Dinov ID et al. Deep Learning in Pharmacogenomics: From Gene Regulation to Patient Stratification. Pharmacogenomics. 2018 May; 19(7): 629-50. doi: 10.2217/pgs-2018-0008.
Dixit S, Kumar A, Srinivasan K, Vincent PD, Ramu Krishnan N. Advancing Genome Editing with Artificial Intelligence: Opportunities, Challenges, and Future Directions. Frontiers in Bioengineering and Biotechnology. 2024 Jan; 11: 1335901. doi: 10.3389/fbioe.2023.1335901.
Bock C, Datlinger P, Chardon F, Coelho MA, Dong MB, Lawson KA et al. High-Content CRISPR Screening. Nature Reviews Methods Primers. 2022 Feb; 2(1): 8. doi: 10.1038/s43586-021-00093-4.
Rub A. Essays on Climate Change, Wheat Production, and Adaptation Strategies in Pakistan. Kansas State University. 2023.
Gaydon DS, Khaliq T, Cheema MJ. How Will Future Climates in the Pakistani Punjab Rice-Wheat System Affect the Optimal Agronomic Settings, and Can Adaptation Offset Losses? Field Crops Research. 2023 Oct; 302: 109037. doi: 10.1016/j.fcr.2023.109037.
Qamer FM, Abbas S, Ahmad B, Hussain A, Salman A, Muhammad S et al. A Framework for Multi-Sensor Satellite Data to Evaluate Crop Production Losses: The Case Study of 2022 Pakistan Floods. Scientific Reports. 2023 Mar; 13(1): 4240. doi: 10.1038/s41598-023-30347-y.
Shafeeque M and Bibi A. Assessing the Impact of Future Climate Scenarios on Crop Water Requirements and Agricultural Water Supply Across Different Climatic Zones of Pakistan. Frontiers in Earth Science. 2023 Oct; 11: 1283171. doi: 10.3389/feart.2023.1283171.
Ahmad N, Fatima S, Mehmood MA, Zaman QU, Atif RM, Zhou W et al. Targeted Genome Editing in Polyploids: Lessons from Brassica. Frontiers in Plant Science. 2023 Jun; 14: 1152468. doi: 10.3389/fpls.2023.1152468.
Wójcik-Gront E, Zieniuk B, Pawełkowicz M. Harnessing AI-Powered Genomic Research for Sustainable Crop Improvement. Agriculture. 2024; 14(12): 2299. doi: 10.3390/agriculture14122299.
Wang Y, Xu G, Cao J, Chen Y, Wu J. Does Digital Literacy Affect Farmers’ Adoption of Agricultural Social Services? An Empirical Study Based on China Land Economic Survey data. PLOS One. 2025 Apr; 20(4): e0320318. doi: 10.1371/journal.pone.0320318.
Khan N, Xu X, Khayyam M, Raziq A. Toward Making the Field Talk: Assessing the Relationship Between Digital Technology and Sustainable Food Production in Agricultural Regions. Frontiers in Nutrition. 2024 Nov; 11: 1462438. doi: 10.3389/fnut.2024.1462438.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Futuristic Biotechnology

This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open-access journal and all the published articles / items are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For comments editor@fbtjournal.com