Biotechnological Approaches to Discovery of Drugs for Veterinary Use
Discovery of Drugs for Veterinary Use
DOI:
https://doi.org/10.54393/fbt.v4i04.150Keywords:
Biotechnology, Veterinary Drug Discovery, Gene Therapy, Vetinformatics, Artificial IntelligenceAbstract
This review examined the application of biotechnology to veterinary drug discovery, highlighting its efficiency and potential for creating novel therapies for a wide range of animal diseases. Compared to conventional methods, biotechnological models offer several advantages, such as reduced time and cost. These models also allowed for an abysmal empathetic of disease mechanisms, facilitating the development of highly targeted treatments. Gene therapy is a significant area of research, demonstrating considerable potential in addressing various veterinary conditions. Its successful application includes the management of ocular disorders in dogs, cardiovascular and renal issues in cats, osteoarthritis in horses, and metabolic disorders like diabetes in dogs. Advances in genome sequencing and proteomics have enabled researchers to understand animal proteomes better, leading to the documentation of potential drug targets and the development of more precise therapies. vetinformatics, which uses computational tools and big data analysis, is vital for accelerating research and development in veterinary science. The convergence of biotechnology and Artificial Intelligence (AI) presents considerable promise for the future of veterinary drug discovery. AI-powered algorithms can analyses large datasets, identify patterns, and predict drug efficacy, thus expediting the drug development process and creating more effective treatments. Continued investment in these areas is essential to realize the transformative potential of biotechnology for improving animal health and advancing veterinary science.
References
Leung TL. Evolution: how a barnacle came to parasitise a shark. Current Biology. 2014 Jun; 24(12): R564-6. doi: 10.1016/j.cub.2014.05.008.
Okonko IO, Olabode OP, Okeleji OS. The role of biotechnology in the socio-economic advancement and national development: An Overview. African Journal of Biotechnology. 2006; 5(23).
Ko S and Abatan MO. Biotechnology a key tool to breakthrough in medical and veterinary research. Biotechnology and Molecular Biology Review. 2008; 3(4): 088-94.
Bardill JP and Hammer BK. Non-coding sRNAs regulate virulence in the bacterial pathogen Vibrio cholerae. RNA Biology. 2012 Apr; 9(4): 392-401. doi: 10.4161/rna.19975.
Yang Y, Zhang LH, Yang BX, Tian JK, Zhang L. Aurantiamide acetate suppresses the growth of malignant gliomas in vitro and in vivo by inhibiting autophagic flux. Journal of Cellular and Molecular Medicine. 2015 May; 19(5): 1055-64. doi: 10.1111/jcmm.12498.
Calvet CY and Mir LM. The promising alliance of anti-cancer electrochemotherapy with immunotherapy. Cancer and Metastasis Reviews. 2016 Jun; 35: 165-77. doi: 10.1007/s10555-016-9615-3.
Beltran WA, Cideciyan AV, Lewin AS, Iwabe S, Khanna H, Sumaroka A et al. Gene therapy rescues photoreceptor blindness in dogs and paves the way for treating human X-linked retinitis pigmentosa. Proceedings of the National Academy of Sciences. 2012 Feb; 109(6): 2132-7. doi: 10.1073/pnas.1118847109.
Lu B. Use of Glucokinase Gene Delivery to Enhance Beta-Cell Proliferation and Function (Doctoral dissertation, College of Medicine-Mayo Clinic). 2018 Jun; 11(6): dmm033316. doi: 10.1242/dmm.033316.
Callan MB, Haskins ME, Wang P, Zhou S, High KA, Arruda VR. Successful phenotype improvement following gene therapy for severe hemophilia A in privately owned dogs. PLOS One. 2016 Mar; 11(3): e0151800. doi: 10.1371/journal.pone.0151800.
Anderson KL and Modiano JF. Progress in adaptive immunotherapy for cancer in companion animals: success on the path to a cure. Veterinary Sciences. 2015 Oct; 2(4): 363-87. doi: 10.3390/vetsci2040363.
Regan D, Guth A, Coy J, Dow S. Cancer immunotherapy in veterinary medicine: Current options and new developments. The Veterinary Journal. 2016 Jan; 207: 20-8. doi: 10.1016/j.tvjl.2015.10.008.
Grandin T. Introduction: The contribution of animals to human welfare. Revue Scientifique et Technique (International Office of Epizootics). 2018 Apr; 37(1): 15-35. doi: 10.20506/rst.37.1.2737.
Randolph TF, Schelling E, Grace D, Nicholson CF, Leroy JL, Cole DC et al. Invited review: Role of livestock in human nutrition and health for poverty reduction in developing countries. Journal of Animal Science. 2007 Nov; 85(11): 2788-800. doi: 10.2527/jas.2007-0467.
Düpjan S and Dawkins MS. Animal welfare and resistance to disease: interaction of affective states and the immune system. Frontiers in Veterinary Science. 2022 Jun; 9: 929805. doi: 10.3389/fvets.2022.929805.
Rexroad C, Vallet J, Matukumalli LK, Reecy J, Bickhart D, Blackburn H et al. Genome to phenome: improving animal health, production, and well-being-a new USDA blueprint for animal genome research 2018-2027. Frontiers in Genetics. 2019 May; 10: 327. doi: 10.3389/fgene.2019.00327.
Ke Q, Duan K, Cheng Y, Xu S, Xiao S, Fang L. Sanguinarine exhibits antiviral activity against porcine reproductive and respiratory syndrome virus via multisite inhibition mechanisms. Viruses. 2023 Mar; 15(3): 688. doi: 10.3390/v15030688.
Dey S, Bruner J, Brown M, Roof M, Chowdhury R. Identification and biophysical characterization of epitope atlas of Porcine Reproductive and Respiratory Syndrome Virus. Computational and Structural Biotechnology Journal. 2024 Dec; 23: 3348-57. doi: 10.1016/j.csbj.2024.08.029.
Kim DY and Kim JM. Multi-omics integration strategies for animal epigenetic studies-A review. Animal Bioscience. 2021 Aug; 34(8): 1271. doi: 10.5713/ab.21.0042.
Gauthier J, Vincent AT, Charette SJ, Derome N. A brief history of bioinformatics. Briefings in Bioinformatics. 2019 Nov; 20(6): 1981-96. doi: 10.1093/bib/bby063.
Hogeweg P. The roots of bioinformatics in theoretical biology. PLOS Computational Biology. 2011 Mar; 7(3): e1002021. doi: 10.1371/journal.pcbi.1002021.
Pathak RK, Singh DB, Singh R. Introduction to basics of bioinformatics. InBioinformatics. 2022 Jan: 1-15. doi: 10.1016/B978-0-323-89775-4.00006-7.
Avery OT, MacLeod CM, McCarty M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. InDie Entdeckung der Doppelhelix: Die grundlegenden Arbeiten von Watson, Crick und anderen 2017 Aug 3 (pp. 97-120). Berlin, Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/978-3-662-47150-0_2.
Griffiths AJ. An Introduction to Genetic Analysis. WH Freeman and Company; 2005. doi: 10.1016/B978-1-85573-953-6.50026-X.
Hershey AD and Chase M. Independent functions of viral protein and nucleic acid in growth of bacteriophage. InDie Entdeckung der Doppelhelix: Die grundlegenden Arbeiten von Watson, Crick und anderen. 2017 Aug: 121-139. doi: 10.1007/978-3-662-47150-0_3.
Tamm C, Shapiro HS, Lipshitz R, Chargaff E. Distribution density of nucleotides within a desoxyribonucleic acid chain. Journal of Biological Chemistry. 1953 Aug; 203(2): 673-88. doi: 10.1016/S0021-9258(19)52337-7.
Watson JD and Crick FH. Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature. 1974 Apr; 248(5451): 765-. doi: 10.1038/248765a0.
Nirenberg M and Leder P. RNA Codewords and Protein Synthesis: The Effect of Trinucleotides upon the Binding of sRNA to Ribosomes. Science. 1964 Sep; 145(3639): 1399-407. doi: 10.1126/science.145.3639.1399.
Smith AJ. [58] DNA sequence analysis by primed synthesis. InMethods in Enzymology. 1980 Jan; 65: 560-580. doi: 10.1016/S0076-6879(80)65060-5.
Maxam AM and Gilbert W. A new method for sequencing DNA. Proceedings of the National Academy of Sciences. 1977 Feb; 74(2): 560-4. doi: 10.1073/pnas.74.2.560.
Jaskolski M, Dauter Z, Wlodawer A. A brief history of macromolecular crystallography, illustrated by a family tree and its N obel fruits. The Federation of European Biochemical Societies Journal. 2014 Sep; 281(18): 3985-4009. doi: 10.1111/febs.12796.
Sanger F and Thompson EO. The amino-acid sequence in the glycyl chain of insulin. 1. The identification of lower peptides from partial hydrolysates. Biochemical Journal. 1953 Feb; 53(3): 353. doi: 10.1042/bj0530353.
Ciftci K and Trovitch P. Applications of genetic engineering in veterinary medicine. Advanced Drug Delivery Reviews. 2000 Sep; 43(1): 57-64. doi: 10.1016/S0169-409X(00)00077-6.
Komáromy AM, Bras D, Esson DW, Fellman RL, Grozdanic SD, Kagemann L et al. The future of canine glaucoma therapy. Veterinary Ophthalmology. 2019 Sep; 22(5): 726-40. doi: 10.1111/vop.12678.
Hu ML, Edwards TL, O'Hare F, Hickey DG, Wang JH, Liu Z et al. Gene therapy for inherited retinal diseases: progress and possibilities. Clinical and Experimental Optometry. 2021 May; 104(4): 444-54. doi: 10.1080/08164622.2021.1880863.
Switonski M. Impact of gene therapy for canine monogenic diseases on the progress of preclinical studies. Journal of Applied Genetics. 2020 May; 61(2): 179-86. doi: 10.1007/s13353-020-00554-8.
Acland GM, Aguirre GD, Bennett J, Aleman TS, Cideciyan AV, Bennicelli J et al. Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Molecular Therapy. 2005 Dec; 12(6): 1072-82. doi: 10.1016/j.ymthe.2005.08.008.
Vijayakumar S and Sasikala M. Application of biotechnology: A current review. International Journal of Pharmacy. 2012; 2(2): 59-66.
Chandrashekara KN. Basic Concept of Biotechnology. Lulu. com; 2015 Jan.
Rege JE. Biotechnology options for improving livestock production in developing countries, with special reference to sub-Saharan Africa.
Ahmed S and Khosa AN. An introduction to DNA technologies and their role in livestock production: a review.
Jacobson SG, Acland GM, Aguirre GD, Aleman TS, Schwartz SB, Cideciyan AV et al. Safety of recombinant adeno-associated virus type 2-RPE65 vector delivered by ocular subretinal injection. Molecular Therapy. 2006 Jun; 13(6): 1074-84. doi: 10.1016/j.ymthe.2006.03.005.
Beall CJ, Phipps AJ, Mathes LE, Stromberg P, Johnson PR. Transfer of the feline erythropoietin gene to cats using a recombinant adeno-associated virus vector. Gene Therapy. 2000 Mar; 7(6): 534-9. doi: 10.1038/sj.gt.3301126.
MacLeod JN, Tetreault JW, Lorschy KA. Expression and bioactivity of recombinant canine erythropoietin. American Journal of Veterinary Research. 1998 Sep; 59(9): 1144-8. doi: 10.2460/ajvr.1998.59.09.1144.
Vapniarsky N, Lame M, McDonnel S, Murphy B. A lentiviral gene therapy strategy for the in vitro production of feline erythropoietin. PLoS One. 2012 Sep; 7(9): e45099. doi: 10.1371/journal.pone.0045099. Epub 2012 Sep 18.
Doshi BS, Samelson-Jones BJ, Nichols TC, Merricks EP, Siner JL, French RA et al. AAV gene therapy in companion dogs with severe hemophilia: Real-world long-term data on immunogenicity, efficacy, and quality of life. Molecular Therapy Methods & Clinical Development. 2024 Mar; 32(1). doi: 10.1016/j.omtm.2024.101205.
Cantore A, Ranzani M, Bartholomae CC, Volpin M, Valle PD, Sanvito F et al. Liver-directed lentiviral gene therapy in a dog model of hemophilia B. Science Translational Medicine. 2015 Mar; 7(277): 277ra28-. doi: 10.1126/scitranslmed.aaa1405.
Crosland A, Davis W, Dukes‐McEwan J. Canine dilated cardiomyopathy. Part 2: manifestations and treatment of clinical DCM. In Practice. 2024 Dec; 46(10): 524-35. doi: 10.1002/inpr.494.
Sleeper MM. Status of therapeutic gene transfer to treat cardiovascular disease in dogs and cats. Veterinary Clinics: Small Animal Practice. 2017 Sep; 47(5): 1113-21. doi: 10.1016/j.cvsm.2017.04.005.
Berni P, Leonardi F, Conti V, Ramoni R, Grolli S, Mattioli G. Case Report: A Novel Ventilated Thermoplastic Mesh Bandage for Post-operative Management of Large Soft Tissue Defects: A Case Series of Three Dogs Treated With Autologous Platelet Concentrates. Frontiers in Veterinary Science. 2021 Sep; 8: 704567. doi: 10.3389/fvets.2021.704567.
Zakirova EY, Aimaletdinov AM, Alexandrova NM, Ganiev IM, Sofronova SA, Valeeva AN et al. Developing a species-specific genetic agent for treatment of skin defects in dogs. Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki. 2020; 162(3): 361-80. doi: 10.26907/2542-064X.2020.3.361-380.
Frisbie DD, Ghivizzani SC, Robbins PD, Evans CH, McIlwraith CW. Treatment of experimental equine osteoarthritis by in vivo delivery of the equine interleukin-1 receptor antagonist gene. Gene Therapy. 2002 Jan; 9(1): 12-20. doi: 10.1038/sj.gt.3301608.
Schulze-Tanzil G, Zreiqat H, Sabat R, Kohl B, Halder A, Muller RD et al. Interleukin-10 and articular cartilage: experimental therapeutical approaches in cartilage disorders. Current Gene Therapy. 2009 Aug; 9(4): 306-15. doi: 10.2174/156652309788921044.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Futuristic Biotechnology
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open-access journal and all the published articles / items are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For comments editor@fbtjournal.com