Unraveling COVID-19: A Global Health Crisis and Ongoing Research

COVID-19: A Global Health Crisis


  • Osama Alam Department of Biotechnology, University of Science & Technology, Bannu, Pakistan
  • Muhammad Ahmad Department of Zoology, Quaid-E- Azam University, Islamabad, Pakistan
  • Munib Qureshi Department of Biotechnology, University of Science & Technology, Bannu, Pakistan
  • Marina Gul Department of Botany, University of Science & Technology, Bannu, Pakistan
  • Naveed Khan Department of Zoology, Govt. Post Graduate College, Bannu, Pakistan
  • Abdul Samad Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Pakistan
  • Zewran Khan Department of Biotechnology, University of Science & Technology, Bannu, Pakistan
  • Syed Atiq Department of Chemistry, University of Science & Technology, Bannu, Pakistan
  • Arsalan Iqbal Department of Biotechnology, University of Science & Technology, Bannu, Pakistan
  • Asim Ullah Department of Zoology, Govt. Post Graduate College, Bannu, Pakistan




COVID-19, SARS-CoV-2, Angiotensin-Converting Enzyme 2


The COVID-19 pandemic, sparked by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has triggered an unparalleled global health crisis with far-reaching consequences. SARS-CoV-2 primarily spreads through respiratory droplets, utilizing angiotensin-converting enzyme 2 (ACE2) receptors in the respiratory system for cellular entry and replication, underscoring the critical need for preventive measures. The emergence of worrisome mutations has led to the development of more transmissible variants, heightening the virus's potential impact. Diagnostic testing, including reverse-transcriptase polymerase chain reaction (RT-PCR), antigen detection, and serology, plays a pivotal role in identifying. COVID-19 diagnostic tests include the ABBOTT ID NOW™ COVID-19 test (95% sensitivity and 100% specificity), the COBAS® SARS-CoV-2 test (98.8% sensitivity and 99% specificity), the SOFIA® 2 SARS ANTIGEN FIA test (91.7% sensitivity and 100% specificity), the XPERT® XPRESS SARS-CoV-2 test (95.4% sensitivity and 97% specificity), and the ACCULA SARS-CoV-2 test (98% sensitivity and 100% specificity). While vaccines include the Pfizer-BioNTech vaccine (95% efficacy), Moderna vaccine (94.10% efficacy), Johnson & Johnson vaccine (66% efficacy), Oxford-AstraZeneca vaccine (76% efficacy), Sinovac vaccine (50.38% efficacy), Sinopharm vaccine (79% efficacy), Bharat Biotech (Covaxin) vaccine (81% efficacy), Sputnik V vaccine (91.60% efficacy), Novavax vaccine (96.4% efficacy), and Covovax vaccine (100% efficacy). The COVID-19 pandemic underscores the ongoing necessity for global cooperation among scientific and medical communities to understand this emerging pathogen, mitigate health impacts, and advance long-term solutions through continuous therapeutic and vaccine research.


Al-Kuraishy HM and Al-Gareeb AI. From SARS-CoV to nCoV-2019: Ruction and argument. Archives of Clinical Infectious Diseases. 2020 Apr; 15: e102624. doi: 10.5812/archcid.102624.

Boni MF, Lemey P, Jiang X, Lam TT, Perry BW, Castoe TA, et al. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nature Microbiology. 2020 Nov; 5(11): 1408-17. doi: 10.1038/s41564-020-0771-4.

Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nature reviews Molecular Cell Biology. 2022 Jan; 23(1): 3-20. doi: 10.1038/s41580-021-00418-x.

Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses. 2012 Jun; 4(6): 1011-33. doi: 10.3390/v4061011.

Nieto-Torres JL, DeDiego ML, Verdiá-Báguena C, Jimenez-Guardeño JM, Regla-Nava JA, Fernandez-Delgado R, et al. Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLoS Pathogens. 2014 May; 10(5): e1004077. doi: 10.1371/journal.ppat.1004077.

Sandhu R and Kaur M. Recombinant ACE2-opportunities and challenges in COVID 19 treatment. Authorea Preprints. 2020 May: 1-4. doi: 10.22541/au.158880140.09169536.

Rudan I, Adeloye D, Sheikh A. COVID-19: vaccines, efficacy and effects on variants. Current Opinion in Pulmonary Medicine. 2022 May; 28(3): 180-91. doi: 10.1097/MCP.0000000000000868.

Simnani FZ, Singh D, Kaur R. COVID-19 phase 4 vaccine candidates, effectiveness on SARS-CoV-2 variants, neutralizing antibody, rare side effects, traditional and nano-based vaccine platforms: a review. 3 Biotech. 2022 Jan; 12(1): 15. doi: 10.1007/s13205-021-03076-0.

Guaman-Bautista LP, Moreta-Urbano E, Oña-Arias CG, Torres-Arias M, Kyriakidis NC, Malcı K, et al. Tracking SARS-CoV-2: Novel trends and diagnostic strategies. Diagnostics. 2021 Oct; 11(11): 1981. doi: 10.3390/diagnostics11111981.

Stokes W, Berenger BM, Singh T, Adeghe I, Schneider A, Portnoy D, et al. Acceptable performance of the Abbott ID NOW among symptomatic individuals with confirmed COVID-19. Journal of Medical Microbiology. 2021 Jul; 70(7): 001372. doi: 10.1099/jmm.0.001372.

Poljak M, Korva M, Knap Gašper N, Fujs Komloš K, Sagadin M, Uršič T, et al. Clinical evaluation of the cobas SARS-CoV-2 test and a diagnostic platform switch during 48 hours in the midst of the COVID-19 pandemic. Journal of Clinical Microbiology. 2020 May; 58(6): 10-128. doi: 10.1128/JCM.00599-20.

Bornemann L, Kaup O, Kleideiter J, Panning M, Ruprecht B, Wehmeier M. Real-life evaluation of the Sofia SARS-CoV-2 antigen assay in a large tertiary care hospital. Journal of Clinical Virology. 2021 Jul; 140: 104854. doi: 10.1016/j.jcv.2021.104854.

Moran A, Beavis KG, Matushek SM, Ciaglia C, Francois N, Tesic V, et al. Detection of SARS-CoV-2 by use of the Cepheid Xpert Xpress SARS-CoV-2 and Roche cobas SARS-CoV-2 assays. Journal of Clinical Microbiology. 2020 Jul; 58(8): 10-128. doi: 10.1128/jcm. 00772-20.

Meo SA, Bukhari IA, Akram J, Meo AS, Klonoff DC. COVID-19 vaccines: comparison of biological, pharmacological characteristics and adverse effects of Pfizer/BioNTech and Moderna Vaccines. European Review for Medical and Pharmacological Sciences. 2021 Feb; 25(3): 1663-9.

Beleche T, Ruhter J, Kolbe A, Marus J, Bush L, Sommers B. COVID-19 vaccine hesitancy: demographic factors, geographic patterns, and changes over time. ASPE Issue Brief. 2021 May; 27: 1-27.

Sønderskov KM, Dinesen PT, Østergaard SD. Sustained COVID-19 vaccine willingness after safety concerns over the Oxford-AstraZeneca vaccine. Danish Medical Journal. 2021 Mar; 68(5): A03210292.

Serap BA, Burucu R, Cantekin I, Dönmez H. Determining the side effects of COVID-19 (Sinovac) vaccination on nurses; an independent descriptive study. Konuralp Medical Journal. 2021 Aug; 13(S1): 479-87. doi: 10.18521/ktd.981790.

Ghiasi N, Valizadeh R, Arabsorkhi M, Hoseyni TS, Esfandiari K, Sadighpour T, et al. Efficacy and side effects of Sputnik V, Sinopharm and AstraZeneca vaccines to stop COVID-19; a review and discussion. Immunopathologia Persa. 2021 Jun; 7(2): e31. doi: 10.34172/ipp.2021.31.

Darbar S, Agarwal S, Saha S. COVID19 vaccine: COVAXIN®-India’s first indigenous effective weapon to fight against coronavirus (A Review). Parana Journal of Science and Education. 2021 Apr; 7(3): 1-9.

McDonald I, Murray SM, Reynolds CJ, Altmann DM, Boyton RJ. Comparative systematic review and meta-analysis of reactogenicity, immunogenicity and efficacy of vaccines against SARS-CoV-2. NPJ Vaccines. 2021 May; 6(1): 74. doi: 10.1038/s41541-021-00336-1.

Kanokudom S, Chansaenroj J, Suntronwong N, Assawakosri S, Yorsaeng R, Nilyanimit P, et al. Safety and immunogenicity of a third dose of COVID-19 protein subunit vaccine (CovovaxTM) after homologous and heterologous two-dose regimens. International Journal of Infectious Diseases. 2023 Jan; 126: 64-72. doi: 10.1016/j.ijid.2022.11.022.

Semwal DK, Chauhan A, Semwal RB, Sircar D, Roy P, Lehmann J. Natural molecules having anti-SARS-CoV activity–cannot they be effective against SARS-CoV-2. Current Science. 2020 Sep; 119: 757-70. doi: 10.18520/cs/v119/i5/757-770.

Onyeaka H, Anumudu CK, Al-Sharify ZT, Egele-Godswill E, Mbaegbu P. COVID-19 pandemic: A review of the global lockdown and its far-reaching effects. Science Progress. 2021 May; 104(2): 00368504211019854. doi: 10.1177/00368504211019854.

de Kloet J. COVID-19 in China: Imagination and deep mediatization. China Information. 2021 Nov; 35(3): 265-73. doi: 10.1177/0920203X211051057.

Sahin E, Bozdayi G, Yigit S, Muftah H, Dizbay M, Tunccan OG, et al. Genomic characterization of SARS‐CoV‐2 isolates from patients in Turkey reveals the presence of novel mutations in spike and nsp12 proteins. Journal of Medical Virology. 2021 Oct; 93(10): 6016-26. doi: 10.1002/jmv.27188.

Frediansyah A, Nainu F, Dhama K, Mudatsir M, Harapan H. Remdesivir and its antiviral activity against COVID-19: A systematic review. Clinical Epidemiology and Global Health. 2021 Jan; 9: 123-7. doi: 10.1016/j.cegh.2020.07.011.

Zheng C, Shao W, Chen X, Zhang B, Wang G, Zhang W. Real-world effectiveness of COVID-19 vaccines: a literature review and meta-analysis. International Journal of Infectious Diseases. 2022 Jan; 114: 252-60. doi: 10.1016/j.ijid.2021.11.009.

Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020 May; 581(7807): 215-20. doi: 10.1038/s41586-020-2180-5.

Lopez AS, Hill M, Antezano J, Vilven D, Rutner T, Bogdanow L, et al. Transmission dynamics of COVID-19 outbreaks associated with child care facilities—Salt Lake City, Utah, April–July 2020. Morbidity and Mortality Weekly Report. 2020 Sep; 69(37): 1319. doi: 10.15585/mmwr.mm6937e3.

Ricci D, Etna MP, Rizzo F, Sandini S, Severa M, Coccia EM. Innate immune response to SARS-CoV-2 infection: From cells to soluble mediators. International Journal of Molecular Sciences. 2021 Jun; 22(13): 7017. doi: 10.3390/ijms22137017.

Mendez-Brito A, El Bcheraoui C, Pozo-Martin F. Systematic review of empirical studies comparing the effectiveness of non-pharmaceutical interventions against COVID-19. Journal of Infection. 2021 Sep; 83(3): 281-93. doi: 10.1016/j.jinf.2021.06.018.

Curti F, Fortunati S, Knoll W, Giannetto M, Corradini R, Bertucci A, et al. A folding-based electrochemical aptasensor for the single-step detection of the SARS-CoV-2 spike protein. ACS Applied Materials & Interfaces. 2022 Apr; 14(17): 19204-11. doi: 10.1021/acsami.2c02405.

Satarker S and Nampoothiri M. Structural proteins in severe acute respiratory syndrome coronavirus-2. Archives of Medical Research. 2020 Aug; 51(6): 482-91. doi: 10.1016/j.arcmed.2020.05.012.

Narayanan K, Chen CJ, Maeda J, Makino S. Nucleocapsid-independent specific viral RNA packaging via viral envelope protein and viral RNA signal. Journal of Virology. 2003 Mar; 77(5): 2922-7. doi: 10.1128/JVI.77.5.2922-2927.2003.

Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. Journal of Pharmaceutical Analysis. 2020 Apr; 10(2): 102-8. doi: 10.1016/j.jpha.2020.03.001.

Pandey P, Rane JS, Chatterjee A, Kumar A, Khan R, Prakash A, et al. Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: an in silico study for drug development. Journal of Biomolecular Structure and Dynamics. 2021 Nov; 39(16): 6306-16. doi: 10.1080/07391102.2020.1796811.

Zeyaullah M, AlShahrani AM, Muzammil K, Ahmad I, Alam S, Khan WH, et al. COVID-19 and SARS-CoV-2 variants: current challenges and health concern. Frontiers in Genetics. 2021 Jun; 12: 693916. doi: 10.3389/fgene.2021.693916.

Mannar D. Structure, function, and neutralization of SARS-CoV-2 spike glycoproteins (Doctoral dissertation, University of British Columbia). 2023. Available at: https://open.library.ubc.ca/soa/cIRcle/collections/ubctheses/24/items/1.0434137.

Chen X, Li R, Pan Z, Qian C, Yang Y, You R, et al. Human monoclonal antibodies block the binding of SARS-CoV-2 spike protein to angiotensin converting enzyme 2 receptor. Cellular & Molecular Immunology. 2020 Jun; 17(6): 647-9. doi: 10.1038/s41423-020-0426-7.

Coroiu A, Moran C, Campbell T, Geller AC. Barriers and facilitators of adherence to social distancing recommendations during COVID-19 among a large international sample of adults. PloS One. 2020 Oct; 15(10): e0239795. doi: 10.1371/journal.pone.0239795.

Dinleyici EC, Borrow R, Safadi MA, van Damme P, Munoz FM. Vaccines and routine immunization strategies during the COVID-19 pandemic. Human Vaccines & Immunotherapeutics. 2021 Feb; 17(2): 400-7. doi: 10.1080/21645515.2020.1804776.

Pastorino R, Villani L, Mariani M, Ricciardi W, Graffigna G, Boccia S. Impact of COVID-19 pandemic on flu and COVID-19 vaccination intentions among university students. Vaccines. 2021 Jan; 9(2): 70. doi: 10.3390/vaccines9020070.

Vanaparthy R, Mohan G, Vasireddy D, Atluri P. Review of COVID-19 viral vector-based vaccines and COVID-19 variants. Le Infezioni in Medicina. 2021 Sep; 29(3): 328. doi: 10.53854/liim-2903-3.

Lemley MA and Sherkow JS. The antibody patent paradox. Yale LJ. 2022; 132: 994. doi: 10.2139/ssrn.4032912.

Teijaro JR and Farber DL. COVID-19 vaccines: modes of immune activation and future challenges. Nature Reviews Immunology. 2021 Apr; 21(4): 195-7. doi: 10.1038/s41577-021-00526-x.

Weinberg CR. Making the best use of test kits for COVID-19. American Journal of Epidemiology. 2020 May; 189(5): 363-4. doi: 10.1093/aje/kwaa080.

Chavda VP, Bezbaruah R, Athalye M, Parikh PK, Chhipa AS, Patel S, et al. Replicating viral vector-based vaccines for COVID-19: potential avenue in vaccination arena. Viruses. 2022 Apr; 14(4): 759. doi: 10.3390/v14040759.


DOI: 10.54393/fbt.v3i02.47
Published: 2023-09-30

How to Cite

Alam, O., Ahmad, M., Qureshi, M., Gul, M., Khan, N., Samad, A., Khan, Z., Atiq, S., Iqbal, A., & Ullah, A. (2023). Unraveling COVID-19: A Global Health Crisis and Ongoing Research: COVID-19: A Global Health Crisis. Futuristic Biotechnology, 3(02), 10–18. https://doi.org/10.54393/fbt.v3i02.47