Actinomycetes: Ultimate Potential Source of Bioactive Compounds Production
Actinomycetes for Bioactive Compounds Production
DOI:
https://doi.org/10.54393/fbt.v4i04.146Keywords:
Actinomycetes, Streptomyces, Micromonospora, Rare ActinomycetesAbstract
Every day, increased microbial resistance demands the search for new natural sources that can produce natural and effective antimicrobial compounds. Actinomycetes are attractive microorganisms with an enormous and unlimited potential to produce economically and biotechnologically important metabolites. Approximately 75% of all bioactive compounds produced so far originate from this group of bacteria. Many of these compounds have been successfully isolated and converted into valuable medications and other naturally derived synthetic compounds with antimicrobial and chemotherapeutic properties. The antimicrobial agents produced by this valuable group of prokaryotes were effectively used to rival parasites and other microbes for assets. They include many genera, each with the potential to produce various novel products. For example, one of the leading genera is Streptomyces, which contributes 70% of total antibiotics such as macrolide, aminoglycoside, Rifamycin, Ivermectin, chloramphenicol, and a large number of other medicinally valuable antimicrobial agents. It also includes anticancer agents as well. Similar to Streptomyces, Micromonospora is another major source of antibiotics producing Tetrocarcins, Fortimicins, Antlermicins, Sagamicins, Mutamicins, Verdamicins, Sisomicins, Calicheamicin, and gentamicin. Other rare actinomycetes are potential producers of novel and broad-spectrum antibiotics, including Salinosporamide A, Marinomycin A, Arenimycin, Vancomycin, Abyssomicins, and Proximicins. Due to the expanding studies, data on the production of various metabolites by this unique and outstanding phylum is expanding daily. This review has made an effort to improve the pre-available knowledge on producing and characterizing novel antimicrobial compounds with therapeutic potential from terrestrial and marine actinomycetes.
References
Riccardi N, Rotulo GA, Castagnola E. Definition of Opportunistic Infections in Immunocompromised Children on the Basis of Etiologies and Clinical Features: A Summary for Practical Purposes. Current Pediatric Reviews. 2019 Nov; 15(4): 197-206. doi: 10.2174/1573396315666190617151745.
Aliero AA, Adam AS, Ntulume I, Bagudo AI, Kudu AA, Ondieki MC et al. Molecular Characterization and Optimization of Bioactive Compounds Production of Three Actinomycetes SPP Isolated from Waste Dump Soil from Western Uganda. Current Trends in Biotechnology and Pharmacy. 2018; 12(3): 230-44.
Ngamcharungchit C, Chaimusik N, Panbangred W, Euanorasetr J, Intra B. Bioactive Metabolites from Terrestrial and Marine Actinomycetes. Molecules. 2023 Aug; 28(15): 5915. doi: 10.3390/molecules28155915.
Shrestha B, Nath DK, Maharjan A, Poudel A, Pradhan RN, Aryal S. Isolation and Characterization of Potential Antibiotic‐Producing Actinomycetes from Water and Soil Sediments of Different Regions of Nepal. International Journal of Microbiology. 2021; 2021(1): 5586165. doi: 10.1155/2021/5586165.
De Simeis D and Serra S. Actinomycetes: A Never-Ending Source of Bioactive Compounds—An Overview On Antibiotics Production. Antibiotics. 2021 Apr; 10(5): 483. doi: 10.3390/antibiotics10050483.
Pancu DF, Scurtu A, Macasoi IG, Marti D, Mioc M, Soica C et al. Antibiotics: Conventional Therapy and Natural Compounds with Antibacterial Activity—A Pharmaco-Toxicological Screening. Antibiotics. 2021 Apr; 10(4): 401. doi: 10.3390/antibiotics10040401.
Shanthi V. Actinomycetes: Implications and Prospects in Sustainable Agriculture. Bio-fertilizers: Study and Impact. 2021 Jul: 335-70. doi: 10.1002/9781119724995.ch11.
Cong Y, Yang S, Rao X. Vancomycin Resistant Staphylococcus Aureus Infections: A Review of Case Updating and Clinical Features. Journal of Advanced Research. 2020 Jan; 21: 169-76. doi: 10.1016/j.jare.2019.10.005.
Barrenechea V, Vargas-Reyes M, Quiliano M, Milón P. A Complementary Mechanism of Bacterial mRNA Translation Inhibition by Tetracyclines. Frontiers in Microbiology. 2021 Jun; 12: 682682. doi: 10.3389/fmicb.2021.682682.
Yu T and Zeng F. Chloramphenicol Interfere with 50S Ribosomal Subunit Maturation via Direct and Indirect Mechanisms. Biomolecules. 2024 Sep; 14(10): 1225. doi: 10.3390/biom14101225.
Krawczyk SJ, Leśniczak-Staszak M, Gowin E, Szaflarski W. Mechanistic Insights into Clinically Relevant Ribosome-Targeting Antibiotics. Biomolecules. 2024 Oct; 14(10): 1263. doi: 10.3390/biom14101263.
Müller M, Bialas E, Sturm I, Sood U, Lal R, Bechthold A. Genomic Modifications for Enhanced Antibiotic Production in Rifamycin Derivative-Producing Amycolatopsis Mediterranei S699 Strains: Focusing On Rifq and Rifo Genes. Frontiers in Antibiotics. 2024 Jun; 3: 1399139. doi: 10.3389/frabi.2024.1399139.
Sasaki K, Takada H, Hayashi C, Ohya K, Yamaguchi Y, Takahashi Y et al. Synthesis of Novobiocin Derivatives and Evaluation of Their Antigonococcal Activity and Pharmacokinetics. Bioorganic and Medicinal Chemistry. 2023 Sep; 92: 117381. doi: 10.1016/j.bmc.2023.117381.
Kapoor R, Saini A, Sharma D. Indispensable Role of Microbes in Anticancer Drugs and Discovery Trends. Applied Microbiology and Biotechnology. 2022 Aug; 106(13): 4885-906. doi: 10.1007/s00253-022-12046-2.
Oh KK, Yoon SJ, Song SH, Park JH, Kim JS, Kim MJ et al. A Scheme to Underpin Key Mediator (S) in Salinosporamide (S) Against Pan-Tumor Via Systems Biology Concept. Journal of Translational Medicine. 2024 May; 22(1): 492. doi: 10.1186/s12967-024-05299-0.
Schulz S, Sletta H, Fløgstad Degnes K, Krysenko S, Williams A, Olsen SM et al. Optimization of FK-506 Production in Streptomyces Tsukubaensis by Modulation of Crp-Mediated Regulation. Applied Microbiology and Biotechnology. 2023 May; 107(9): 2871-86. doi: 10.1007/s00253-023-12473-9.
Cerna-Chávez E, Rodríguez-Rodríguez JF, García-Conde KB, Ochoa-Fuentes YM. Potential of Streptomyces Avermitilis: A Review on Avermectin Production and Its Biocidal Effect. Metabolites. 2024 Jun; 14(7): 374. doi: 10.3390/metabo14070374.
Lin R, Hong LL, Jiang ZK, Li KM, He WQ, Kong JQ. Midecamycin is Inactivated by Several Different Sugar Moieties at Its Inactivation Site. International Journal of Molecular Sciences. 2021 Nov; 22(23): 12636. doi: 10.3390/ijms222312636.
Bridget AF, Nguyen CT, Magar RT, Sohng JK. Increasing Production of Spinosad in Saccharopolyspora Spinosa by Metabolic Engineering. Biotechnology and Applied Biochemistry. 2023 Jun; 70(3): 1035-43. doi: 10.1002/bab.2418.
Al-Ansari M, Alkubaisi N, Vijayaragavan P, Murugan K. Antimicrobial Potential of Streptomyces Sp. To the Gram Positive and Gram Negative Pathogens. Journal of Infection and Public Health. 2019 Nov; 12(6): 861-6. doi: 10.1016/j.jiph.2019.05.016.
Li H, Li W, Song K, Liu Y, Zhao G, Du YL. Nitric Oxide Synthase-Guided Genome Mining Identifies a Cytochrome P450 Enzyme for Olefin Nitration in Bacterial Specialized Metabolism. Synthetic and Systems Biotechnology. 2024 Mar; 9(1): 127-33. doi: 10.1016/j.synbio.2024.01.005.
Wang X, Mohammad IS, Fan L, Zhao Z, Nurunnabi M, Sallam MA et al. Delivery Strategies of Amphotericin B for Invasive Fungal Infections. Acta Pharmaceutica Sinica B. 2021 Aug; 11(8): 2585-604. doi: 10.1016/j.apsb.2021.04.010.
Failoc-Rojas VE, Silva-Díaz H, Maguiña JL, Rodriguez-Morales AJ, Díaz-Velez C, Apolaya-Segura M et al. Evidence-Based Indications for Ivermectin in Parasitic Diseases: An Integrated Approach to Context and Challenges in Peru. Parasite Epidemiology and Control. 2023 Aug: e00320. doi: 10.1016/j.parepi.2023.e00320.
Cong Z, Huang X, Liu Y, Liu Y, Wang P, Liao S et al. Cytotoxic Anthracycline and Antibacterial Tirandamycin Analogues from a Marine-Derived Streptomyces Sp. SCSIO 41399. The Journal of Antibiotics. 2019 Jan; 72(1): 45-9. doi: 10.1038/s41429-018-0103-6.
Bayrakci M, Keskinates M, Yilmaz B. Antibacterial, Thermal Decomposition and in Vitro Time Release Studies of Chloramphenicol from Novel PLA and PVA Nanofiber Mats. Materials Science and Engineering: C. 2021 Mar; 122: 111895. doi: 10.1016/j.msec.2021.111895.
Kisil OV, Efimenko TA, Efremenkova OV. Looking Back to Amycolatopsis: History of the Antibiotic Discovery and Future Prospects. Antibiotics. 2021 Oct; 10(10): 1254. doi: 10.3390/antibiotics10101254.
Amelia-Yap ZH, Azman AS, AbuBakar S, Low VL. Streptomyces Derivatives as an Insecticide: Current Perspectives, Challenges and Future Research Needs for Mosquito Control. Acta Tropica. 2022 May; 229: 106381. doi: 10.1016/j.actatropica.2022.106381.
Yan YS, Zou LS, Wei HG, Yang MY, Yang YQ, Li XF et al. An Atypical Two-Component System, AtcR/AtcK, Simultaneously Regulates the Biosynthesis of Multiple Secondary Metabolites in Streptomyces Bingchenggensis. Applied and Environmental Microbiology. 2024 Jan; 90(1): e01300-23. doi: 10.1128/aem.01300-23.
Song Z, Xu T, Wang J, Hou Y, Liu C, Liu S et al. Secondary Metabolites of the Genus Amycolatopsis: Structures, Bioactivities and Biosynthesis. Molecules. 2021 Mar; 26(7): 1884. doi: 10.3390/molecules26071884.
Baltz RH. Regulation of Daptomycin Biosynthesis in Streptomyces Roseosporus: New Insights from Genomic Analysis and Synthetic Biology to Accelerate Lipopeptide Discovery and Commercial Production. Natural Product Reports. 2024; 41: 1895-1914. doi: 10.1039/D4NP00024B.
Gao Q, Deng S, Jiang T. Recent Developments in the Identification and Biosynthesis of Antitumor Drugs Derived from Microorganisms. Engineering Microbiology. 2022 Dec; 2(4): 100047. doi: 10.1016/j.engmic.2022.100047.
Murzyn A, Orzeł J, Obajtek N, Mróz A, Miodowska D, Bojdo P et al. Aclarubicin: Contemporary Insights into Its Mechanism of Action, Toxicity, Pharmacokinetics, and Clinical Standing. Cancer Chemotherapy and Pharmacology. 2024 Aug; 94(2): 123-39. doi: 10.1007/s00280-024-04693-1.
Rusu A and Buta EL. The Development of Third-Generation Tetracycline Antibiotics and New Perspectives. Pharmaceutics. 2021 Dec; 13(12): 2085. doi: 10.3390/pharmaceutics13122085.
Geleta D, Abebe G, Alemu B, Workneh N, Beyene G. Mechanisms of Bacterial Drug Resistance with Special Emphasis on Phenotypic and Molecular Characterization of Extended Spectrum Beta-lactamase. New Microbiologica. 2024 May; 47(1): 1-4.
Bahamdain LA. Extreme Habitats of Saudi Arabia as Sources of Novel Actinomycetes with Antimicrobial Activities: Doctoral dissertation, King Abdulaziz University Jeddah. 2020.
Sharma M, Dangi P, Choudhary M. Actinomycetes: Source, Identification, and Their Applications. International Journal of Current Microbiology and Applied Sciences. 2014; 3(2): 801-32. doi: 10.20546/ijcmas.2017.602.089.
Anilkumar RR, Edison LK, Pradeep NS. Exploitation of Fungi and Actinobacteria for Sustainable Agriculture. Microbial Biotechnology. Applications in Agriculture and Environment. 2017; (1): 135-62. doi: 10.1007/978-981-10-6847-8_6.
Chaturvedi S and Khurana SP. Importance of Actinobacteria for Bioremediation. Plant Biotechnology: Progress in Genomic Era. 2019: 277-307. doi: 10.1007/978-981-13-8499-8_13.
Rammali S, Hilali L, Dari K, Bencharki B, Rahim A, Timinouni M et al. Antimicrobial and Antioxidant Activities of Streptomyces Species from Soils of Three Different Cold Sites in the Fez-Meknes Region Morocco. Scientific Reports. 2022 Oct; 12(1): 17233. doi: 10.1038/s41598-022-21644-z.
Trenozhnikova LP, Baimakhanova GB, Baimakhanova BB, Balgimbayeva AS, Daugaliyeva ST, Faizulina ER et al. Beyond Traditional Screening: Unveiling Antibiotic Potentials of Actinomycetes in Extreme Environments. Heliyon. 2024 Nov; 10(22). doi: 10.1016/j.heliyon.2024.e40371.
Xu BL, Wang YY, Dong CM. Study on Marine Actinomycetes and Analysis of Their Secondary Metabolites. Life Research. 2023; 6(4): 18. doi: 10.53388/LR20230018.
Yu Y, Tang B, Dai R, Zhang B, Chen L, Yang H et al. Identification of the Streptothricin and Tunicamycin Biosynthetic Gene Clusters by Genome Mining in Streptomyces Sp. Strain Fd1-Xmd. Applied Microbiology and Biotechnology. 2018 Mar; 102: 2621-33. doi: 10.1007/s00253-018-8748-4.
Jagannathan SV, Manemann EM, Rowe SE, Callender MC, Soto W. Marine Actinomycetes, New Sources of Biotechnological Products. Marine Drugs. 2021 Jun; 19(7): 365. doi: 10.3390/md19070365.
Norouzi H, Danesh A, Mohseni M, Khorasgani MR. Marine Actinomycetes with Probiotic Potential and Bioactivity Against Multidrug-Resistant Bacteria. International Journal of Molecular and Cellular Medicine. 2018; 7(1): 44. doi: 10.22088/IJMCM.BUMS.7.1.44.
Ngema SS and Madoroba E. A Mini-Review of Anti-Listerial Compounds from Marine Actinobacteria (1990–2023). Antibiotics. 2024 Apr; 13(4): 362. doi: 10.3390/antibiotics13040362.
Ko K, Kim SH, Park S, Han HS, Lee JK, Cha JW et al. Discovery and Photoisomerization of New Pyrrolosesquiterpenoids Glaciapyrroles D and E, from Deep-Sea Sediment Streptomyces sp. Marine Drugs. 2022 Apr; 20(5): 281. doi: 10.3390/md20050281.
Mushtaq S, Abbasi BH, Uzair B, Abbasi R. Natural Products as Reservoirs of Novel Therapeutic Agents. Experimental and Clinical Sciences, International Journal. 2018; 17: 420. doi: 10.17179/excli2018-1174.
Gozari M, Alborz M, El-Seedi HR, Jassbi AR. Chemistry, Biosynthesis and Biological Activity of Terpenoids and Meroterpenoids in Bacteria and Fungi Isolated from Different Marine Habitats. European Journal of Medicinal Chemistry. 2021 Jan; 210: 112957. doi: 10.1016/j.ejmech.2020.112957.
Escalante A, Mendoza-Flores R, Gosset G, Bolívar F. The Aminoshikimic Acid Pathway in Bacteria as Source of Precursors for the Synthesis of Antibacterial and Antiviral Compounds. Journal of Industrial Microbiology and Biotechnology. 2021 Dec; 48(9-10): kuab053. doi: 10.1093/jimb/kuab053.
Zhang J, Li B, Qin Y, Karthik L, Zhu G, Hou C et al. A New Abyssomicin Polyketide with Anti-Influenza a Virus Activity from A Marine-Derived Verrucosispora Sp. MS100137. Applied Microbiology and Biotechnology. 2020 Feb; 104: 1533-43. doi: 10.1007/s00253-019-10217-2.
Dembitsky VM. Microbiological Aspects of Unique, Rare, and Unusual Fatty Acids Derived from Natural Amides and Their Pharmacological Profile. Microbiology Research. 2022 Jun; 13(3): 377-417. doi: 10.3390/microbiolres13030030.
Gomathi A and Gothandam KM. Investigation of Anti‐Inflammatory and Toxicity Effects of Mangrove‐Derived Streptomyces Rochei Strain VITGAP173. Journal of Cellular Biochemistry. 2019 Oct; 120(10): 17080-97. doi: 10.1002/jcb.28969.
Karpiński TM and Adamczak A. Anticancer Activity of Bacterial Proteins and Peptides. Pharmaceutics. 2018 Apr; 10(2): 54. doi: 10.3390/pharmaceutics10020054.
Wilke DV, Jimenez PC, Branco PC, Rezende-Teixeira P, Trindade-Silva AE, Bauermeister A et al. Anticancer Potential of Compounds from the Brazilian Blue Amazon. Planta Medica. 2021 Feb; 87(01/02): 49-70. doi: 10.1055/a-1257-8402.
Casertano M, Menna M, Imperatore C. The Ascidian-Derived Metabolites with Antimicrobial Properties. Antibiotics. 2020 Aug; 9(8): 510. doi: 10.3390/antibiotics9080510.
Gupta A, Singh D, Singh SK, Singh VK, Singh AV, Kumar A. Role of Actinomycetes in Bioactive and Nanoparticle Synthesis. In Role of Plant Growth Promoting Microorganisms in Sustainable Agriculture and Nanotechnology. 2019 Jan: 163-182. doi: 10.1016/B978-0-12-817004-5.00010-5.
Bouchard H. Determining the Antibacterial Activity and Mode of Action of Tirandamycin. 2020.
Yu HQ, Li G, Lou HX. Isolation, Biosynthesis, and Biological Activity of Polycyclic Xanthones from Actinomycetes. Frontiers in Microbiology. 2022 Jul; 13: 922089. doi: 10.3389/fmicb.2022.922089.
Azad SM, Jin Y, Ser HL, Goh BH, Lee LH, Thawai C et al. Biological Insights into the Piericidin Family Of Microbial Metabolites. Journal of Applied Microbiology. 2022 Feb; 132(2): 772-84. doi: 10.1111/jam.15222.
Kamala K, Sivaperumal P, Kamath SM, Thilagaraj WR, Rajaram R. Marine Actinobacteria as a Source for Emerging Biopharmaceuticals. Encyclopedia of Marine Biotechnology. 2020 Aug; 4: 2095-105. doi: 10.1002/9781119143802.ch93.
Thiyagarajamoorthy DK, Arulanandam CD, Dahms HU, Murugaiah SG, Krishnan M, Rathinam AJ. Marine Bacterial Compounds Evaluated by in Silico Studies as Antipsychotic Drugs Against Schizophrenia. Marine Biotechnology. 2018 Oct; 20: 639-53. doi: 10.1007/s10126-018-9835-3.
Lin L, Li Z, Yan L, Liu Y, Yang H, Li H. Global, Regional, and National Cancer Incidence and Death for 29 Cancer Groups in 2019 and Trends Analysis of the Global Cancer Burden, 1990–2019. Journal of Hematology and Oncology. 2021 Dec; 14: 1-24. doi: 10.1186/s13045-021-01213-z.
Wang Y, Zhang L, He Z, Deng J, Zhang Z, Liu L, Ye W, Liu S. Tunicamycin Induces ER Stress and Inhibits Tumorigenesis of Head and Neck Cancer Cells by Inhibiting N-Glycosylation. American Journal of Translational Research. 2020; 12(2): 541.
De Almeida Chuffa LG, Seiva FR, Silveira HS, Cesário RC, da Silva Tonon K et al. Melatonin Regulates Endoplasmic Reticulum Stress in Diverse Pathophysiological Contexts: A Comprehensive Mechanistic Review. Journal of Cellular Physiology. 2024 Nov; 239(11): e31383. doi: 10.1002/jcp.31383.
Nami B, Donmez H, Kocak N. Tunicamycin-Induced Endoplasmic Reticulum Stress Reduces in Vitro Subpopulation and Invasion of CD44+/CD24-Phenotype Breast Cancer Stem Cells. Experimental and Toxicologic Pathology. 2016 Aug; 68(7): 419-26. doi: 10.1016/j.etp.2016.06.004.
Karthikeyan A, Joseph A, Nair BG. Promising Bioactive Compounds from the Marine Environment and Their Potential Effects On Various Diseases. Journal of Genetic Engineering and Biotechnology. 2022 Dec; 20(1): 14. doi: 10.1186/s43141-021-00290-4.
Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F et al. Cancer Statistics in China, 2015. CA: A Cancer Journal for Clinicians. 2016 Mar; 66(2): 115-32. doi: 10.3322/caac.21338.
Devine AJ. Studies on the Biosynthesis of Spirotetronate Polyketides (Doctoral dissertation, University of Bristol). 2023.
Sadaka C, Ellsworth E, Hansen PR, Ewin R, Damborg P, Watts JL. Review on Abyssomicins: Inhibitors of the Chorismate Pathway and Folate Biosynthesis. Molecules. 2018 Jun; 23(6): 1371. doi: 10.3390/molecules23061371.
Zhong G, Wang ZJ, Yan F, Zhang Y, Huo L. Recent Advances in Discovery, Bioengineering, and Bioactivity-Evaluation of Ribosomally Synthesized and Post-Translationally Modified Peptides. American Chemical Society Biology and Medical Chemistry Au. 2022 Dec; 3(1): 1-31. doi: 10.1021/acsbiomedchemau.2c00062.
Huang L, Zhang R, Hu Y, Zhou H, Cao J, Lv H et al. Epidemiology and Risk Factors of Methicillin-Resistant Staphylococcus Aureus and Vancomycin-Resistant Enterococci Infections in Zhejiang China from 2015 to 2017. Antimicrobial Resistance and Infection Control. 2019 Dec; 8: 1-9. doi: 10.1186/s13756-019-0539-x.
Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T, Kyrpides NC et al. Genome-based Taxonomic Classification of the Phylum Actinobacteria. Frontiers in Microbiology. 2018 Aug; 9: 2007. doi: 10.3389/fmicb.2018.02007.
Dhandapani R, Thangavelu S, Ragunathan L, Paramasivam R, Velmurugan P, Muthupandian S. Potential Bioactive Compounds from Marine Streptomyces Sp. and There in Vitro Antibiofilm and Antibacterial Activities Against Antimicrobial-Resistant Clinical Pathogens. Applied Biochemistry and Biotechnology. 2022 Oct; 194(10): 4702-23. doi: 10.1007/s12010-022-04072-7.
Alam K, Mazumder A, Sikdar S, Zhao YM, Hao J, Song C et al. Streptomyces: The Biofactory of Secondary Metabolites. Frontiers in Microbiology. 2022 Sep; 13: 968053. doi: 10.3389/fmicb.2022.968053.
Quinn GA, Banat AM, Abdelhameed AM, Banat IM. Streptomyces from Traditional Medicine: Sources of New Innovations in Antibiotic Discovery. Journal of Medical Microbiology. 2020 Aug; 69(8): 1040-8. doi: 10.1099/jmm.0.001232.
Amangelsin Y, Semenova Y, Dadar M, Aljofan M, Bjørklund G. The Impact of Tetracycline Pollution On the Aquatic Environment and Removal Strategies. Antibiotics. 2023 Feb; 12(3): 440. doi: 10.3390/antibiotics12030440.
Markley JL and Wencewicz TA. Tetracycline-Inactivating Enzymes. Frontiers in Microbiology. 2018 May; 9: 1058. doi: 10.3389/fmicb.2018.01058.
Wang J, Pan Y, Shen J, Xu Y. The Efficacy and Safety of Tigecycline for Treating Bloodstream Infections: A Systematic Review and Meta-Analysis. Annals of Clinical Microbiology and Antimicrobials. 2017 Dec; 16: 1-0. doi: 10.1186/s12941-017-0199-8.
Yaghoubi S, Zekiy AO, Krutova M, Gholami M, Kouhsari E, Sholeh M et al. Tigecycline Antibacterial Activity, Clinical Effectiveness, and Mechanisms and Epidemiology of Resistance: Narrative Review. European Journal of Clinical Microbiology and Infectious Diseases. 2022 Jul: 1-20. doi: 10.1007/s10096-020-04121-1.
Cattoir V and Leclercq R. Resistance to Macrolides, Lincosamides, and Streptogramins. Antimicrobial Drug Resistance: Mechanisms of Drug Resistance. 2017; (1): 269-80. doi: 10.1007/978-3-319-46718-4_18.
Anandabaskar N. Protein Synthesis Inhibitors. Introduction to Basics of Pharmacology and Toxicology: Essentials of Systemic Pharmacology: From Principles to Practice. 2021; (2): 835-68. doi: 10.1007/978-981-33-6009-9_55.
Altshuler J, Aitken SL, Maslow M, Papadopoulos J, Safdar A. Antibiotic Consideration in Transplant Recipients. Principles and Practice of Transplant Infectious Diseases. 2019: 855-901. doi: 10.1007/978-1-4939-9034-4_50.
Yan S, Zeng M, Wang H, Zhang H. Micromonospora: A Prolific Source of Bioactive Secondary Metabolites with Therapeutic Potential. Journal of Medicinal Chemistry. 2022 Jun; 65(13): 8735-71. doi: 10.1021/acs.jmedchem.2c00626.
Hifnawy MS, Fouda MM, Sayed AM, Mohammed R, Hassan HM, AbouZid SF et al. The Genus Micromonospora as a Model Microorganism for Bioactive Natural Product Discovery. Royal Society of Chemistry Advances. 2020; 10(35): 20939-59. doi: 10.1039/D0RA04025H.
Pradhan BL, Lodhi L, Dey KK, Ghosh M. Analyzing Atomic-Scale Structural Details and Nuclear Spin Dynamics of Four Macrolide Antibiotics: Erythromycin, Clarithromycin, Azithromycin, and Roxithromycin. Royal Society of Chemistry Advances. 2024; 14(25): 17733-70. doi: 10.1039/D4RA00718B.
Miklasińska-Majdanik M. Mechanisms of Resistance to Macrolide Antibiotics among Staphylococcus Aureus. Antibiotics. 2021 Nov; 10(11): 1406. doi: 10.3390/antibiotics10111406.
Wei Z, Shi X, Lian R, Wang W, Hong W, Guo S. Exclusive Production of Gentamicin C1a from Micromonospora Purpurea by Metabolic Engineering. Antibiotics. 2019 Dec; 8(4): 267. doi: 10.3390/antibiotics8040267.
Gui C, Zhang S, Zhu X, Ding W, Huang H, Gu YC et al. Antimicrobial Spirotetronate Metabolites from Marine-Derived Micromonospora Harpali SCSIO GJ089. Journal of Natural Products. 2017 May; 80(5): 1594-603. doi: 10.1021/acs.jnatprod.7b00176.
Kong J, Wu ZX, Wei L, Chen ZS, Yoganathan S. Exploration of Antibiotic Activity of Aminoglycosides, in Particular Ribostamycin Alone and in Combination with Ethylene-diamine-tetra-acetic Acid Against Pathogenic Bacteria. Frontiers in Microbiology. 2020 Jul; 11: 1718. doi: 10.3389/fmicb.2020.01718.
Thy M, Timsit JF, de Montmollin E. Aminoglycosides for the Treatment of Severe Infection Due to Resistant Gram-Negative Pathogens. Antibiotics. 2023 May; 12(5): 860. doi: 10.3390/antibiotics12050860.
Subramani R, Aalbersberg W. Culturable Rare Actinomycetes: Diversity, Isolation and Marine Natural Product Discovery. Applied Microbiology and Biotechnology. 2013 Nov; 97: 9291-321. doi: 10.1007/s00253-013-5229-7.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Futuristic Biotechnology
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open-access journal and all the published articles / items are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For comments editor@fbtjournal.com