A review on Diversity, Mechanism of Action and Evolutionary Significance of Antimicrobial Peptides

A Review on Antimicrobial Peptides


  • Noor Muhammad Department of Zoology, Government College University, Lahore, Pakistan
  • Waiza Ansar Department of Zoology, Government College University, Lahore, Pakistan
  • Arif Ullah Department of Zoology, Government College University, Lahore, Pakistan
  • Iram Liaqat Department of Zoology, Government College University, Lahore, Pakistan
  • Zahid Nazir Department of Zoology, Government College University, Lahore, Pakistan




Antimicrobial, Peptides, Antibiotics, ß-sheets, Toroidal Pore Model


Antimicrobial peptides (AMPs) are small, evolutionarily main peptides that widely exist in rich diversity across nature and play a significant role in the innate immunity of various taxa from invertebrates to vertebrates. They are equally targeted as the newest discovered antibiotics against various prokaryotes, including bacteria, viruses, fungi, and parasites. AMPs show broad-spectrum potential with high efficacy and low toxicity via in vivo studies. Undoubtedly, this also confers their specific mechanism of action (MOA) and unique but distinct structures. Already, many studies have reported that AMPs possess diverse MOA against various pathogenic microbes. AMPs also encourage the cells to enhance wound healing, programmed cell death, angiogenesis, and produce chemokines. However, the associated risk is the evolution of resistance to AMPs could lead to possible danger to inherent immunity. From an evolutionary perspective, they are usually considered nonspecific with redundant functions due to the fact that they are easily duplicated and produce pseudogenes, thus showing less evolution at the primary amino acid level. However, the microbial resistance risk against conventional antibiotics can be minimized by using AMPs efficiently and sustainably. Understanding the nature and evolution of AMPs will be beneficial as well. The current review focused on antimicrobial peptides' diversity, history, MOA, and evolutionary significance.  


Silva NC, Sarmento B, Pintado M. The importance of antimicrobial peptides and their potential for therapeutic use in ophthalmology. International journal of Antimicrobial Agents. 2013 Jan; 41(1): 5-10. doi: 10.1016/j.ijantimicag.2012.07.020.

Wu Q, Patočka J, Kuča K. Insect antimicrobial peptides, a mini review. Toxins. 2018 Nov; 10(11): 461. doi: 10.3390/toxins10110461.

Kang HK, Kim C, Seo CH, Park Y. The therapeutic applications of antimicrobial peptides (AMPs): a patent review. Journal of Microbiology. 2017 Dec; 55(1): 1-12. doi: 10.1007/s12275-017-6452-1.

Lei J, Sun L, Huang S, Zhu C, Li P, He J et al. The antimicrobial peptides and their potential clinical applications. American Journal of Translational Research. 2019 Jul; 11(7): 3919.

Ebenhan T, Gheysens O, Kruger HG, Zeevaart JR, Sathekge MM. Antimicrobial peptides: their role as infection-selective tracers for molecular imaging. BioMed Research International. 2014 Aug; 2014. doi: 10.1155/2014/867381.

Bierbaum G and Sahl HG. Lantibiotics: mode of action, biosynthesis and bioengineering. Current Pharmaceutical Biotechnology. 2009 Jan; 10(1): 2-18. doi: 10.2174/138920109787048616.

Magana M, Pushpanathan M, Santos AL, Leanse L, Fernandez M, Ioannidis A et al. The value of antimicrobial peptides in the age of resistance. The Lancet Infectious Diseases. 2020 Jul; 20(9): e216-e30. doi: 10.1016/S1473-3099(20)30327-3.

Park SC, Park Y, Hahm KS. The role of antimicrobial peptides in preventing multidrug-resistant bacterial infections and biofilm formation. International Journal of Molecular Sciences. 2011 Sep; 12(9): 5971-92. doi: 10.3390/ijms12095971.

Hojo K, Nagaoka S, Ohshima T, Maeda N. Bacterial interactions in dental biofilm development. Journal of Dental Research. 2009 Oct; 88(11): 982-90. doi: 10.1177/0022034509346811.

Shahrour H, Ferrer-Espada R, Dandache I, Bárcena-Varela S, Sánchez-Gómez S, Chokr A et al. AMPs as anti-biofilm agents for human therapy and prophylaxis. Antimicrobial Peptides. 2019 Apr: 257-79. doi: 10.1007/978-981-13-3588-4_14.

de Breij A, Riool M, Cordfunke RA, Malanovic N, de Boer L, Koning RI et al. The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Science translational medicine. 2018 Jan; 10(423): eaan4044. doi: 10.1126/scitranslmed.aan4044.

Raja A, LaBonte J, Lebbos J, Kirkpatrick P. Daptomycin. Nature Reviews Drug Discovery. 2003 Dec; 2(12): 943-4. doi: 10.1038/nrd1258.

Bradshaw JP. Cationic antimicrobial peptides. BioDrugs. 2003 Aug; 17(4): 233-40. doi: 10.2165/00063030-200317040-00002.

Kościuczuk EM, Lisowski P, Jarczak J, Strzałkowska N, Jóźwik A, Horbańczuk J et al. Cathelicidins: family of antimicrobial peptides. A review. Molecular Biology Reports. 2012 Dec; 39(12): 10957-70. doi: 10.1007/s11033-012-1997-x.

Li Y, Xiang Q, Zhang Q, Huang Y, Su Z. Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides. 2012 Oct; 37(2): 207-15. doi: 10.1016/j.peptides.2012.07.001.

Wang G, Li X, Wang Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Research. 2016 Jan; 44(D1): D1087-D93. doi: 10.1093/nar/gkv1278.

Otto M. MRSA virulence and spread. Cellular Microbiology. 2012 Jul; 14(10): 1513-21. doi: 10.1111/j.1462-5822.2012.01832.x.

Fox JL. Antimicrobial peptides stage a comeback: Better understanding of the mechanisms of action, modification and synthesis of antimicrobial peptides is reigniting commercial development. Nature Biotechnology. 2013 May; 31(5): 379-83.

Mura M, Wang J, Zhou Y, Pinna M, Zvelindovsky AV, Dennison SR et al. The effect of amidation on the behaviour of antimicrobial peptides. European Biophysics Journal. 2016 Jan; 45(3): 195-207. doi: 10.1007/s00249-015-1094-x.

Bals R, Wilson J. Cathelicidins-a family of multifunctional antimicrobial peptides. Cellular and Molecular Life Sciences CMLS. 2003 Apr; 60: 711-20.

Hancock RE, Haney EF, Gill EE. The immunology of host defence peptides: beyond antimicrobial activity. Nature Reviews Immunology. 2016 Apr; 16(5): 321-34. doi: 10.1038/nri.2016.29.

Zairi A, Tangy F, Bouassida K, Hani K. Dermaseptins and magainins: antimicrobial peptides from frogs' skin—new sources for a promising spermicides microbicides—a mini review. Journal of Biomedicine and Biotechnology. 2009 Nov; 2009. doi: 10.1155/2009/452567.

Bhattacharjya S and Straus SK. Design, engineering and discovery of novel α-helical and β-boomerang antimicrobial peptides against drug resistant bacteria. International Journal of Molecular Sciences. 2020 Aug; 21(16): 5773. doi: 10.3390/ijms21165773.

Mata ÉCGd, Mourão CBF, Rangel M, Schwartz EF. Antiviral activity of animal venom peptides and related compounds. Journal of Venomous Animals and Toxins including Tropical Diseases. 2017 Jun; 23. doi: 10.1590/S1678-91992007000200001.

Szymanowski F, Balatti GE, Ambroggio E, Hugo AA, Martini MF, Fidelio GD et al. Differential activity of lytic α-helical peptides on lactobacilli and lactobacilli-derived liposomes. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2019 Jun; 1861(6): 1069-77. doi: 10.1016/j.bbamem.2019.03.004.

Brian Chia C, Gong Y, Bowie JH, Zuegg J, Cooper MA. Membrane binding and perturbation studies of the antimicrobial peptides caerin, citropin, and maculatin. Peptide Science. 2011 Mar; 96(2): 147-57. doi: 10.1002/bip.21438.

Ulm H, Wilmes M, Shai Y, Sahl HG. Antimicrobial host defensins–specific antibiotic activities and innate defense modulation. Frontiers in Immunology. 2012 Aug; 3(249). doi: 10.3389/fimmu.2012.00249.

Tincu JA and Taylor SW. Antimicrobial peptides from marine invertebrates. Antimicrobial Agents and Chemotherapy. 2004 Oct; 48(10): 3645-54. doi: 10.1128/aac.48.10.3645-3654.2004.

Lee TH, Hall KN, Aguilar MI. Antimicrobial peptide structure and mechanism of action: a focus on the role of membrane structure. Current Topics in Medicinal Chemistry. 2016 Jan; 16(1): 25-39.

Takahashi D, Shukla SK, Prakash O, Zhang G. Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity. Biochimie. 2010 Sep; 92(9): 1236-41. doi: 10.1016/j.biochi.2010.02.023.

Xie M, Liu D, Yang Y. Anti-cancer peptides: classification, mechanism of action, reconstruction and modification. Open Biology. 2020 Jul; 10(7): 200004. doi: 10.1098/rsob.200004.

Niidome T, Kobayashi K, Arakawa H, Hatakeyama T, Aoyagi H. Structure–activity relationship of an antibacterial peptide, maculatin 1.1, from the skin glands of the tree frog, Litoria genimaculata. Journal of Peptide Science: An Official Publication of the European Peptide Society. 2004 Jul; 10(7): 414-22. doi: 10.1002/psc.560.

Park CB, Kim HS, Kim SC. Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochemical and biophysical research communications. 1998 Mar; 244(1): 253-7. doi: 10.1006/bbrc.1998.8159.

Sikorska E, Greber K, Rodziewicz-Motowidło S, Szultka Ł, Łukasiak J, Kamysz W. Synthesis and antimicrobial activity of truncated fragments and analogs of citropin 1.1: The solution structure of the SDS micelle-bound citropin-like peptides. Journal of Structural Biology. 2009 Jul; 168(2): 250-8. doi: 10.1016/j.jsb.2009.07.012.

Paiva AD and Breukink E. Antimicrobial Peptides Produced by Microorganisms. In: Hiemstra PS, Zaat SAJ, editors. Antimicrobial Peptides and Innate Immunity. Basel: Springer Basel; 2013: 53-95.

Scherer KM, Spille JH, Sahl HG, Grein F, Kubitscheck U. The lantibiotic nisin induces lipid II aggregation, causing membrane instability and vesicle budding. Biophys Journal. 2015 Mar; 108(5): 1114-24. doi: 10.1016%2Fj.bpj.2015.01.020.

Corrêa JAF, Evangelista AG, de Melo Nazareth T, Luciano FB. Fundamentals on the molecular mechanism of action of antimicrobial peptides. Materialia. 2019 Dec; 8: 100494. doi: 10.1016/j.mtla.2019.100494.

Kumar P, Kizhakkedathu JN, Straus SK. Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules. 2018 Jan; 8(1): 4. doi:10.3390/biom8010004.

Wimley WC and Hristova K. Antimicrobial peptides: successes, challenges and unanswered questions. The Journal of Membrane Biology. 2011 Jan; 239(1): 27-34. doi: 10.1007/s00232-011-9343-0.

Guilhelmelli F, Vilela N, Albuquerque P, Derengowski L, Silva-Pereira I, Kyaw C. Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Frontiers in Microbiology. 2013 Dec; 4: 353. doi: 10.3389/fmicb.2013.00353.

Andersson DI, Hughes D, Kubicek-Sutherland JZ. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resistance Updates. 2016 May; 26: 43-57. doi: 10.1016/j.drup.2016.04.002.

Wimley WC. Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chemical Biology. 2010 Aug; 5(10): 905-17. doi: 10.1021/cb1001558.

Ramamoorthy A, Lee DK, Narasimhaswamy T, Nanga RP. Cholesterol reduces pardaxin's dynamics—a barrel-stave mechanism of membrane disruption investigated by solid-state NMR. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2010 Feb; 1798(2): 223-7. doi: 10.1016/j.bbamem.2009.08.012.

Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature Reviews Microbiology. 2005 Mar; 3(3): 238-50. doi: 10.1038/nrmicro1098.

Vineeth Kumar T and Sanil G. A review of the mechanism of action of amphibian antimicrobial peptides focusing on peptide-membrane interaction and membrane curvature. Current Protein and Peptide Science. 2017 Dec; 18(12): 1263-72. doi: 10.2174/1389203718666170710114932.

Malanovic N and Lohner K. Antimicrobial peptides targeting gram-positive bacteria. Pharmaceuticals. 2016 Sep; 9(3): 59. doi: 10.3390/ph9030059.

Münch D and Sahl HG. Structural variations of the cell wall precursor lipid II in Gram-positive bacteria—Impact on binding and efficacy of antimicrobial peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2015 Nov; 1848(11): 3062-71. doi: 10.1016/j.bbamem.2015.04.014.

Hilchie AL, Wuerth K, Hancock RE. Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nature Chemical Biology. 2013 Nov; 9(12): 761-8. doi: 10.1038/nchembio.1393.

Tassanakajon A, Somboonwiwat K, Amparyup P. Sequence diversity and evolution of antimicrobial peptides in invertebrates. Developmental & Comparative Immunology. 2015 Feb; 48(2): 324-41. doi: 10.1016/j.dci.2014.05.020.

Mishra B and Wang G. The importance of amino acid composition in natural AMPs: an evolutional, structural, and functional perspective. Frontiers in Immunology. 2012 Jul; 3: 221. doi: 10.3389/fimmu.2012.00221.

Lazzaro BP, Zasloff M, Rolff J. Antimicrobial peptides: Application informed by evolution. Science. 2020 May; 368(6490): eaau5480. doi: 10.1126/science.aau5480.

Viljakainen L. Evolutionary genetics of insect innate immunity. Briefings in Functional Genomics. 2015 May; 14(6): 407-12. doi: 10.3390/genes12050725.

Pasupuleti M, Schmidtchen A, Malmsten M. Antimicrobial peptides: key components of the innate immune system. Critical Reviews in Biotechnology. 2012 Nov; 32(2): 143-71. doi: 10.3109/07388551.2011.594423.



DOI: 10.54393/fbt.v4i02``.99
Published: 2024-06-30

How to Cite

Muhammad, N., Ansar, W., Ullah, A., Liaqat, I., & Nazir, Z. (2024). A review on Diversity, Mechanism of Action and Evolutionary Significance of Antimicrobial Peptides : A Review on Antimicrobial Peptides . Futuristic Biotechnology, 4(02), 02–09. https://doi.org/10.54393/fbt.v4i02``.99



Review Articles