Recent Advances in 3D Bioprinting and Biofabrication
Advances in 3D Bioprinting and Biofabrication
DOI:
https://doi.org/10.54393/fbt.v5i2.170Keywords:
3Dimensional Bioprinting, Biofabrication, Regenerative Medicine, Tissue EngineeringAbstract
Biomedical technology has gone beyond the limit due to the 3D bioprinting and biofabrication, to create a new regenerative medicine. To explore the advancements in biomedical technology through 3D bioprinting and biofabrication, with a focus on their applications in regenerative medicine and the development of functional tissue and organ constructs. This paper reviewed key bioprinting technologies, bioink components, and advanced biofabrication strategies including nanomaterials and organoid-based methods. The review highlights tissue engineering potential and challenges in biofabrication, emphasizing emerging solutions like 4D bioprinting, organ-on-chip systems, and AI integration. Translating bioprinting advances into clinical therapies demands interdisciplinary collaboration and integration of emerging technologies to overcome current barriers.
References
George AH, George AS, Baskar T, Shahul A. 3D printed organs: a new frontier in medical technology. Partners Universal International Innovation Journal. 2023 Jun; 1(3): 187-208. doi: 10.5281/zenodo.8076965.
Al Hashimi N and Vijayavenkataraman S. Toxicity Aspects and Ethical Issues of Bioprinting. 3D Bioprinting from Lab to Industry. 2024 Aug: 251-71. doi: 10.1002/9781119894407.ch8.
Alzoubi L, Aljabali AA, Tambuwala MM. Empowering precision medicine: the impact of 3D printing on personalized therapeutic. Aaps Pharmscitech. 2023 Nov; 24(8): 228. doi: 10.1208/s12249-023-02682-w.
Askari M, Naniz MA, Kouhi M, Saberi A, Zolfagharian A, Bodaghi M. Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with focus on advanced fabrication techniques. Biomaterials Science. 2021 Oct; 9(3): 535-73. doi: 10.1039/D0BM00973C.
Aziz MF. Mapping the Ethical and Regulatory Issues of 3D Bioprinting Using Biomaterials in a Low-and Middle-Income Nation: Malaysian Perspectives. InSustainable Material for Biomedical Engineering Application. 2023 Aug: 467-482. doi: 10.1007/978-981-99-2267-3_22.
Bektas CK, Luo J, Conley B, Le KP, Lee KB. 3D Bioprinting Approaches for Enhancing Stem Cell-Based Neural Tissue Regeneration. Acta Biomaterialia. 2025 Jan. doi: 10.1016/j.actbio.2025.01.006.
Bian L. Functional hydrogel bioink, a key challenge of 3D cellular bioprinting. APL bioengineering. 2020 Sep; 4(3). doi: 10.1063/5.0018548.
Boopathi S and Kumar P. Advanced bioprinting processes using additive manufacturing technologies: Revolutionizing tissue engineering. 3D Printing Technologies: Digital Manufacturing. Artificial Intelligence, Industry. 2024 Jan; 4(95): 1627-57. doi: 10.1515/9783111215112-005.
Budharaju H, Sundaramurthi D, Sethuraman S. Embedded 3D bioprinting-An emerging strategy to fabricate biomimetic & large vascularized tissue constructs. Bioactive Materials. 2024 Feb; 32: 356-84. doi: 10.1016/j.bioactmat.2023.10.012.
Burley SK, Bhikadiya C, Bi C, Bittrich S, Chen L, Crichlow GV et al. RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Research. 2021 Jan; 49(D1): D437-51. doi: 10.1093/nar/gkaa1038.
Chandra DK, Reis RL, Kundu SC, Kumar A, Mahapatra C. Nanomaterials-Based Hybrid Bioink Platforms in Advancing 3D Bioprinting Technologies for Regenerative Medicine. ACS Biomaterials Science & Engineering. 2024 Jun; 10(7): 4145-74. doi: 10.1021/acsbiomaterials.4c00166.
Ciocca M, Febo C, Gentile G, Orlando A, Massoumi F, Altana A et al. 3D-Bioprinted Light-Sensitive Cell Scaffold Based on Alginate-Conjugated Polymer Nanoparticles for Biophotonics Applications. BioNanoScience. 2025 Jun; 15(2): 1-8. doi: 10.1007/s12668-025-01863-0.
Costa JB, Silva-Correia J, Reis RL, Oliveira JM. Deep learning in bioengineering and biofabrication: A powerful technology boosting translation from research to clinics. Journal of 3D Printing in Medicine. 2021 Dec; 5(4): 191-211. doi: 10.2217/3dp-2021-0007.
Crook JM and Tomaskovic-Crook E. Bioprinting 3D human induced pluripotent stem cell constructs for multilineage tissue engineering and modeling. 3D Bioprinting: Principles and Protocols. 2020: 251-8. doi: 10.1007/978-1-0716-0520-2_17.
Dai Y, Wang P, Mishra A, You K, Zong Y, Lu WF et al. 3D Bioprinting and Artificial Intelligence‐Assisted Biofabrication of Personalized Oral Soft Tissue Constructs. Advanced Healthcare Materials. 2024 Dec: e2402727. doi: 10.1002/adhm.2402727.
Ding Z, Tang N, Huang J, Cao X, Wu S. Global hotspots and emerging trends in 3D bioprinting research. Frontiers in Bioengineering and Biotechnology. 2023 May; 11: 1169893. doi: 10.3389/fbioe.2023.1169893.
Debnath S, Agrawal A, Jain N, Chatterjee K, Player DJ. Collagen as a bio-ink for 3D printing: a critical review. Journal of Materials Chemistry B. 2025 Jan. doi: 10.1039/D4TB01060D.
Fang Y, Guo Y, Liu T, Xu R, Mao S, Mo X et al. Advances in 3D bioprinting. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers. 2022 Mar; 1(1): 100011. doi: 10.1016/j.cjmeam.2022.100011.
Garcia-Garcia LA and Rodriguez-Salvador M. Uncovering 3D bioprinting research trends: A keyword network mapping analysis. International Journal of Bioprinting. 2018 Jul; 4(2): 147. doi: 10.18063/ijb.v4i2.147.
Ghilan A, Chiriac AP, Nita LE, Rusu AG, Neamtu I, Chiriac VM. Trends in 3D printing processes for biomedical field: opportunities and challenges. Journal of Polymers and the Environment. 2020 May;28:1345-67. doi: 10.1007/s10924-020-01722-x.
Gopinathan J and Noh I. Recent trends in bioinks for 3D printing. Biomaterials Research. 2018 Apr; 22(1): 11. doi: 10.1186/s40824-018-0122-1.
Gu Y, Zhang L, Du X, Fan Z, Wang L, Sun W et al. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink. Journal of Biomaterials Applications. 2018 Nov; 33(5): 609-18. doi: 10.1177/0885328218805864.
Guida L, Cavallaro M, Levi M. Advancements in high-resolution 3D bioprinting: exploring technological trends, bioinks and achieved resolutions. Bioprinting. 2024 Nov: e00376. doi: 10.1016/j.bprint.2024.e00376.
Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: an overview. Biomaterials Science. 2018 May; 6(5): 915-46. doi: 10.1039/C7BM00765E.
Gugulothu SB, Asthana S, Homer-Vanniasinkam S, Chatterjee K. Trends in photopolymerizable bioinks for 3D bioprinting of tumor models. JACS Au. 2023 Aug; 3(8): 2086-106. doi: 10.1021/jacsau.3c00281.
Gomes Gama JF, Dias EA, Aguiar Coelho RM, Chagas AM, Aguiar Coelho Nt J, Alves LA. Development and implementation of a significantly low-cost 3D bioprinter using recycled scrap material. Frontiers in Bioengineering and Biotechnology. 2023 Apr; 11: 1108396. doi: 10.3389/fbioe.2023.1108396.
Bharadwaj T and Verma D. Open source bioprinters: Revolutionizing the accessibility of biofabrication. Bioprinting. 2021 Aug; 23: e00155. doi: 10.1016/j.bprint.2021.e00155.
Lindner N and Blaeser A. Scalable biofabrication: A perspective on the current state and future potentials of process automation in 3D-bioprinting applications. Frontiers in Bioengineering and Biotechnology. 2022 May; 10: 855042. doi: 10.3389/fbioe.2022.855042.
Yang Q, Gao B, Xu F. Recent advances in 4D bioprinting. Biotechnology Journal. 2020 Jan; 15(1): 1900086. doi: 10.1002/biot.201900086.
Harley WS, Li CC, Toombs J, O'Connell CD, Taylor HK, Heath DE et al. Advances in biofabrication techniques towards functional bioprinted heterogeneous engineered tissues: a comprehensive review. Bioprinting. 2021 Aug; 23: e00147. doi: 10.1016/j.bprint.2021.e00147.
Hölzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A. Bioink properties before, during and after 3D bioprinting. Biofabrication. 2016 Sep; 8(3): 032002. doi: 10.1088/1758-5090/8/3/032002.
Filippi M, Mekkattu M, Katzschmann RK. Sustainable biofabrication: from bioprinting to AI-driven predictive methods. Trends in Biotechnology. 2024 Jul. doi: 10.1016/j.tibtech.2024.07.002.
Fan C, Basharat Z, Mah K, Wei CR. Computational approach for drug discovery against Gardnerella vaginalis in quest for safer and effective treatments for bacterial vaginosis. Scientific Reports. 2024 Jul; 14(1): 17437. doi: 10.1038/s41598-024-68443-2.
Byrne R, Carrico A, Lettieri M, Rajan AK, Forster RJ, Cumba LR. Bioinks and biofabrication techniques for biosensors development: A review. Materials Today Bio. 2024 Aug: 101185. doi: 10.1016/j.mtbio.2024.101185.
Kawecki F and L'Heureux N. Current biofabrication methods for vascular tissue engineering and an introduction to biological textiles. Biofabrication. 2023 Mar; 15(2): 022004. Doi: 10.1088/1758-5090/acbf7a.
Mirzaei M, Okoro OV, Nie L, Petri DF, Shavandi A. Protein-based 3D biofabrication of biomaterials. Bioengineering. 2021 Apr; 8(4): 48. doi: 10.3390/bioengineering8040048.
Naorem RS, Pangabam BD, Bora SS, Fekete C, Teli AB. Immunoinformatics Design of a Multiepitope Vaccine (MEV) Targeting Streptococcus mutans: A Novel Computational Approach. Pathogens. 2024 Oct; 13(10): 916. doi: 10.3390/pathogens13100916.
Ahankari SS, Subhedar AR, Bhadauria SS, Dufresne A. Nanocellulose in food packaging: A review. Carbohydrate Polymers. 2021 Mar; 255: 117479. doi: 10.1016/j.carbpol.2020.117479.
Chand R, Kamei KI, Vijayavenkataraman S. Advances in microfluidic bioprinting for multi-material multi-cellular tissue constructs. Cell Engineering Connect. 2025 Feb; 1(1): 1-0. doi: 10.69709/CellEngC.2024.111335.
Moroni L, Tabury K, Stenuit H, Grimm D, Baatout S, Mironov V. What can biofabrication do for space and what can space do for biofabrication?. Trends in Biotechnology. 2022 Apr; 40(4): 398-411. doi: 10.1016/j.tibtech.2021.08.008.
Zhou C, Liu C, Liao Z, Pang Y, Sun W. AI for biofabrication. Biofabrication. 2024 Nov; 17(1): 012004. doi: 10.1088/1758-5090/ad8966.
Santos-Beato P, Midha S, Pitsillides AA, Miller A, Torii R, Kalaskar DM. Biofabrication of the osteochondral unit and its applications: Current and future directions for 3D bioprinting. Journal of Tissue Engineering. 2022 Nov; 13: 20417314221133480. doi: 10.1177/20417314221133480.
Yeo M, Sarkar A, Singh YP, Derman ID, Datta P, Ozbolat IT. Synergistic coupling between 3D bioprinting and vascularization strategies. Biofabrication. 2023 Nov; 16(1): 012003. doi: 10.1088/1758-5090/ad0b3f.
Wu C, Xu Y, Fang J, Li Q. Machine learning in biomaterials, biomechanics/mechanobiology, and biofabrication: State of the art and perspective. Archives of Computational Methods in Engineering. 2024 Sep; 31(7): 3699-765. doi: 10.1007/s11831-024-10100-y.
Wu Y, Yang X, Gupta D, Alioglu MA, Qin M, Ozbolat V et al. Dissecting the Interplay Mechanism among Process Parameters toward the Biofabrication of High‐Quality Shapes in Embedded Bioprinting. Advanced Functional Materials. 2024 May; 34(21): 2313088. doi: 10.1002/adfm.202313088.
Woodfield TB, Moroni L, Miller JS. Biophysics of biofabrication. APL Bioengineering. 2021 Sep; 5(3). doi: 10.1063/5.0057459.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Futuristic Biotechnology

This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open-access journal and all the published articles / items are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For comments editor@fbtjournal.com