Ultraviolet and Ethyl Methanesulfonate-Induced Mutagenesis in Aspergillus niger and Salmonella typhi for Enhanced Azoreductase Production in Azo Dyes Bioremediation
Mutagenesis in Aspergillus niger and Salmonella typhi
DOI:
https://doi.org/10.54393/fbt.v4i03.164Keywords:
Azoreductase, Azo Dye Degradation, Aspergillus niger, Salmonella typhi, EMS Mutagenesis, UV Mutagenesis, Bioremediation, L-cysteine, Enzyme EnhancementAbstract
Azoreductase, an enzyme capable of degrading toxic industrial azo dyes, holds significant potential for environmental remediation. Objective: To enhance azoreductase production through innovative approaches, addressing the challenge of azo dye persistence in industrial wastewater. Method: Mutagenesis using EMS and UV irradiation was applied to Aspergillus niger and Salmonella typhi, followed by treatment with L-cysteine HCl to enhance azoreductase production. Result: Mutant strains showed significantly higher azoreductase activity and more efficient azo dye degradation than wild types. Conclusions: Mutagenesis is a promising strategy to boost azoreductase production for effective industrial dye bioremediation. Chemical mutagenesis using Ethyl Methane Sulfonate (EMS) (1–6 mM) and physical mutagenesis via UV irradiation (254 nm, 10–120 minutes) were applied to Aspergillus niger and Salmonella typhi to induce mutations. Further enhancement of enzyme production and strain resistance was achieved through treatment with L-cysteine HCl monohydrate. Comparative analysis using spectrophotometry and Fourier Transform Infrared (FTIR) spectroscopy demonstrated increase in azoreductase activity in mutant strains compared to wild strains. Additionally, textile dye degradation tests validated the enzyme’s efficacy for bioremediation.
References
Alzain H, Kalimugogo V, Hussein K, Karkadan M. A review of environmental impact of azo dyes. International Journal of Research and Review. 2023 Jun; 10(6): 673-89. doi: 10.52403/ijrr.20230682.
Singh GB, Vinayak A, Mudgal G, Kesari KK. Azo dye bioremediation: An interdisciplinary path to sustainable fashion. Environmental Technology & Innovation. 2024 Sep: 103832. doi: 10.1016/j.eti.2024.103832.
Chaudhary R, Nawaz A, Fouillaud M, Dufossé L, Haq IU, Mukhtar H. Microbial cell factories: biodiversity, pathway construction, robustness, and industrial applicability. Microbiology Research. 2024 Feb; 15(1): 247-72. doi: 10.3390/microbiolres15010018.
Bumpus JA. Biodegradation of azo dyes by fungi. Mycology Series. 2004 Mar; 21: 457-70. doi: 10.1201/9780203913369.ch38.
Bala S, Garg D, Thirumalesh BV, Sharma M, Sridhar K, Inbaraj BS et al. Recent strategies for bioremediation of emerging pollutants: a review for a green and sustainable environment. Toxics. 2022 Aug; 10(8): 484. doi: 10.3390/toxics10080484.
Wang R, Li H, Liu Y, Chen J, Peng F, Jiang Z et al. Efficient removal of azo dyes by Enterococcus faecalis R1107 and its application in simulated textile effluent treatment. Ecotoxicology and Environmental Safety. 2022 Jun; 238: 113577. doi: 10.1016/j.ecoenv.2022.113577.
Ikram M, Naeem M, Zahoor M, Rahim A, Hanafiah MM, Oyekanmi AA et al. Biodegradation of azo dye methyl red by Pseudomonas aeruginosa: optimization of process conditions. International Journal of Environmental Research and Public Health. 2022 Aug; 19(16): 9962. doi: 10.3390/ijerph19169962.
Ayed L, Bekir K, Jabeur C. Modeling and optimization of biodegradation of methylene blue by Staphylococcus aureus through a statistical optimization process: a sustainable approach for waste management. Water Science and Technology. 2022 Jul; 86(2): 380-94. doi: 10.2166/wst.2022.211.
Kumar Shri Guru A and Kumar Singh S. Biodegradation of azo dyes by Bacillus subtilis "RA29" 2018. Available from: https://www.researchgate.net/publication/281959357.
Kumar A, Chopra J, Singh SK, Khan A, Singh RN. Biodegradation of azo dyes by Bacillus subtilis 'RA29'. Der Pharmacia Lettre. 2015 Jan; 7(6): 234-8.
Philip I, Sarojini S, Biswas S, Jayaram S. Exploring the Potential of Bacillus velezensis, an Endophytic Bacteria Isolated from Alternanthera philoxeroides for Plant Growth Promotion and Bioremediation Properties. Journal of Pure & Applied Microbiology. 2023 Sep; 17(3). doi: 10.22207/JPAM.17.3.40.
Carruthers DN and Lee TS. Translating advances in microbial bioproduction to sustainable biotechnology. Frontiers in Bioengineering and Biotechnology. 2022 Aug; 10: 968437. doi: 10.3389/fbioe.2022.968437.
Basu S, Bose C, Ojha N, Das N, Das J, Pal M et al. Evolution of bacterial and fungal growth media. Bioinformation. 2015 Apr; 11(4): 182. doi: 10.6026/97320630011182.
Schroeder JW, Yeesin P, Simmons LA, Wang JD. Sources of spontaneous mutagenesis in bacteria. Critical Reviews in Biochemistry and Molecular Biology. 2018 Jan; 53(1): 29-48. doi: 10.1080/10409238.2017.1394262.
Wei W, Ho WC, Behringer MG, Miller SF, Bcharah G, Lynch M. Rapid evolution of mutation rate and spectrum in response to environmental and population-genetic challenges. Nature Communications. 2022 Aug; 13(1): 4752. doi: 10.1038/s41467-022-32353-6.
Tamano K. Enhancing microbial metabolite and enzyme production: current strategies and challenges. Frontiers in Microbiology. 2014 Dec; 5: 718. doi: 10.3389/fmicb.2014.00718.
Yuan L, Chang J, Yin Q, Lu M, Di Y, Wang P et al. Fermented soybean meal improves the growth performance, nutrient digestibility, and microbial flora in piglets. Animal Nutrition. 2017 Mar; 3(1): 19-24. doi: 10.1016/j.aninu.2016.11.003.
Brüschweiler BJ and Merlot C. Azo dyes in clothing textiles can be cleaved into a series of mutagenic aromatic amines which are not regulated yet. Regulatory Toxicology and Pharmacology. 2017 Aug; 88: 214-26. doi: 10.1016/j.yrtph.2017.06.012.
Leonard CA, Brown SD, Hayman JR. Random mutagenesis of the Aspergillus oryzae genome results in fungal antibacterial activity. International Journal of Microbiology. 2013; 2013(1): 901697. doi: 10.1155/2013/901697.
Chen H, Hopper SL, Cerniglia CE. Biochemical and molecular characterization of an azoreductase from Staphylococcus aureus, a tetrameric NADPH-dependent flavoprotein. Microbiology. 2005 May; 151(5): 1433-41. doi: 10.1099/mic.0.27805-0.
Saranraj P, Stella D, Sivasakthivelan P. Separation, purification and characterization of dye degrading enzyme azoreductase from bacterial isolates. Central European Journal of Experimental Biology. 2014; 3(2): 19-25.
Cong J, Xie X, Liu Y, Qin Y, Fan J, Fang Y et al. Biochemical characterization of a novel azo reductase named BVU5 from the bacterial flora DDMZ1: application for decolorization of azo dyes. RSC advances. 2022 Jan; 12(4): 1968-81. doi: 10.1039/D1RA08090C.
Liu S, Xu X, Kang Y, Xiao Y, Liu H. Degradation and detoxification of azo dyes with recombinant ligninolytic enzymes from Aspergillus sp. with secretory overexpression in Pichia pastoris. Royal Society Open Science. 2020 Sep; 7(9): 200688. doi: 10.1098/rsos.200688.
Diba K, Kordbacheh P, Mirhendi SH, Rezaie S, Mahmoudi M. Identification of Aspergillus species using morphological characteristics. 2007 Oct – Dec; 23(6): 867-872.
Afzal H, Shazad S, Qamar S, Nisa U. Morphological identification of Aspergillus species from the soil of Larkana District (Sindh, Pakistan). Asian Journal of Agriculture and Biology. 2013 Jan; 1(3): 105-17.
Baweja M, Nain L, Kawarabayasi Y, Shukla P. Current technological improvements in enzymes toward their biotechnological applications. Frontiers in Microbiology. 2016 Jun; 7: 965. doi: 10.3389/fmicb.2016.00965.
Pinheiro LR, Gradíssimo DG, Xavier LP, Santos AV. Degradation of azo dyes: bacterial potential for bioremediation. Sustainability. 2022 Jan; 14(3): 1510. doi: 10.3390/su14031510.
Alabdraba W and Bayati M. Biodegradation of Azo dyes a review. International Journal of Environmental Sciences & Natural Resources. 2014 Oct; 1(4): 179-89.
Sudha M, Saranya A, Selvakumar G, Sivakumar N. Microbial degradation of azo dyes: a review. International Journal of Current Microbiology and Applied Sciences. 2014 Mar; 3(2): 670-90.
Pramanik S and Chaudhuri S. Laccase activity and azo dye decolorization potential of Podoscypha elegans. Mycobiology. 2018 Jan; 46(1): 79-83. doi: 10.1080/12298093.2018.1454006.
Sega GA. A review of the genetic effects of ethyl methanesulfonate. Mutation Research/Reviews in Genetic Toxicology. 1984 Sep; 134(2-3): 113-42. doi: 10.1016/0165-1110(84)90007-1.
Chen L, Duan L, Sun M, Yang Z, Li H, Hu K et al. Current trends and insights on EMS mutagenesis application to studies on plant abiotic stress tolerance and development. Frontiers in Plant Science. 2023 Jan; 13: 1052569. doi: 10.3389/fpls.2022.1052569.
Ribeiro O, Magalhães F, Aguiar TQ, Wiebe MG, Penttilä M, Domingues L. Random and direct mutagenesis to enhance protein secretion in Ashbya gossypii. Bioengineered. 2013 Sep; 4(5): 322-31. doi: 10.4161/bioe.24653.
Majumdar A. Molecular techniques for the improvement of microbial biocontrol agents against plant pathogens. Egyptian Journal of Biological Pest Control. 2023 Oct; 33(1): 103. doi: 10.1186/s41938-023-00746-4.
Ghazi S, Sepahy AA, Azin M, Khaje K, Khavarinejad R. UV mutagenesis for the overproduction of xylanase from Bacillus mojavensis PTCC 1723 and optimization of the production condition. Iranian Journal of Basic Medical Sciences. 2014 Nov; 17(11): 844–853.
Kaul P and Asano Y. Strategies for discovery and improvement of enzyme function: state of the art and opportunities. Microbial Biotechnology. 2012 Jan; 5(1): 18-33. doi: 10.1111/j.1751-7915.2011.00280.x.
Tripathi M, Singh S, Pathak S, Kasaudhan J, Mishra A, Bala S et al. Recent strategies for the remediation of textile dyes from wastewater: a systematic review. Toxics. 2023 Nov; 11(11): 940. doi: 10.3390/toxics11110940.
Hussein HA and Alshammari SO. Cysteine mitigates the effect of NaCl salt toxicity in flax (Linum usitatissimum L) plants by modulating antioxidant systems. Scientific Reports. 2022 Jul; 12(1): 11359. doi: 10.1038/s41598-022-14689-7.
Adeniyi AO, Boyro DE, Chindo IY, Mahmoud AA. Spectrophotometric and infra-red analyses of azo reactive dyes derived from 2-methyl-3-(2'-methylphenyl)-6-arylazo-4-oxoquinazoline. Science World Journal. 2023 Oct; 18(2): 231-9. doi: 10.4314/swj.v18i2.10.
El Awady ME, El-Shall FN, Mohamed GE, Abd-Elaziz AM, Abdel-Monem MO, Hassan MG. Exploring the decolorization efficiency and biodegradation mechanisms of different functional textile azo dyes by Streptomyces albidoflavus 3MGH. BioMed Central Microbiology. 2024 Jun; 24(1): 210. doi: 10.1186/s12866-024-03347-9.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Futuristic Biotechnology

This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open-access journal and all the published articles / items are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For comments editor@fbtjournal.com