Impact of Titanium Dioxide Nanoparticles on Agricultural Crops Performance: A Review of Efficacy and Mechanisms
Nanoparticles on Agricultural Crops
DOI:
https://doi.org/10.54393/fbt.v4i04.145Keywords:
Titanium Dioxide Nanoparticles, Agricultural Productivity, Crop Performance, Nanotechnology, Sustainable AgricultureAbstract
The rapidly increasing global population has escalated the demand for food production, intensifying the pressure on agricultural systems to meet this rising need. Traditional farming methods often fall short of addressing this challenge due to limitations in crop yield and resistance to environmental stress. In response, nanotechnology has emerged as a promising solution, particularly through the application of titanium dioxide nanoparticles (TiO2 NPs). TiO2 NPs, due to their unique physicochemical properties, have gained attention for their potential to enhance agricultural productivity. Their mechanism primarily involves the modulation of light absorption, improving photosynthesis, and offering antimicrobial properties that protect crops from pathogens. Additionally, these nanoparticles can promote nutrient uptake and enhance plant growth, ultimately leading to higher crop yields. The utilization of TiO2 NPs in agriculture offers a sustainable and efficient approach to boosting food production, making it a valuable tool in addressing global food security concerns. However, further research is essential to assess their long-term safety and scalability for widespread agricultural applications
References
Santos CS, Gabriel B, Blanchy M, Menes O, García D, Blanco M et al. Industrial applications of nanoparticles-a prospective overview. Materials Today: Proceedings. 2015 Jan; 2(1): 456-65. doi: 10.1016/j.matpr.2015.04.056.
Rao KG, Ashok CH, Rao KV, Chakra CS, Rajendar V. Synthesis of TiO2 nanoparticles from orange fruit waste. Synthesis. 2015 Feb; 2(1): 1.
Kumar A, Choudhary P, Kumar A, Camargo PH, Krishnan V. Recent advances in plasmonic photocatalysis based on TiO2 and noble metal nanoparticles for energy conversion, environmental remediation, and organic synthesis. Small. 2022 Jan; 18(1): 2101638. doi: 10.1002/smll.202101638.
Mustafa N, Raja NI, Ilyas N, Abasi F, Ahmad MS, Ehsan M et al. Exogenous application of green titanium dioxide nanoparticles (TiO2 NPs) to improve the germination, physiochemical, and yield parameters of wheat plants under salinity stress. Molecules. 2022 Jul; 27(15): 4884. doi: 10.3390/molecules27154884.
Mittler R. ROS are good. Trends in plant science. 2017 Jan; 22(1): 11-9. doi: 10.1016/j.tplants.2016.08.002.
Sehrish AK, Ahmad S, Alomrani SO, Ahmad A, Al-Ghanim KA, Alshehri MA et al. Nutrient strengthening and lead alleviation in Brassica Napus L. by foliar ZnO and TiO2-NPs modulating antioxidant system, improving photosynthetic efficiency and reducing lead uptake. Scientific Reports. 2024 Aug; 14(1): 19437. doi: 10.1038/s41598-024-70204-0.
Faraji J and Sepehri A. Exogenous nitric oxide improves the protective effects of TiO 2 nanoparticles on growth, antioxidant system, and photosynthetic performance of wheat seedlings under drought stress. Journal of Soil Science and Plant Nutrition. 2020 Jun; 20: 703-14. doi: 10.1007/s42729-019-00158-0.
Mattiello A, Filippi A, Pošćić F, Musetti R, Salvatici MC, Giordano C et al. Evidence of phytotoxicity and genotoxicity in Hordeum vulgare L. exposed to CeO2 and TiO2 nanoparticles. Frontiers in Plant Science. 2015 Nov; 6: 1043. doi: 10.3389/fpls.2015.01043.
Tan W, Peralta-Videa JR and Gardea-Torresdey JL. Interaction of titanium dioxide nanoparticles with soil components and plants: current knowledge and future research needs-a critical review. Environmental Science: Nano. 2018; 5(2): 257-78. doi: 10.1039/C7EN00985B.
Azmat R, Altaf I, Moin S. The reflection of the photocatalytic properties of TiO2 nanoparticles on photosynthetic activity of Spinacia oleracea plants. Pakistan Journal of Botany. 2020 Aug; 52(4): 1229-34. doi: 10.30848/PJB2020-4(2).
Hanif HU, Arshad M, Ali MA, Ahmed N, Qazi IA. Phyto-availability of phosphorus to Lactuca sativa in response to soil applied TiO2 nanoparticles. Pakistan Journal of Agricultural Sciences. 2015 Mar; 52(1): 177-82.
Alharby HF, Rizwan M, Iftikhar A, Hussaini KM, ur Rehman MZ, Bamagoos AA et al. Effect of gibberellic acid and titanium dioxide nanoparticles on growth, antioxidant defense system and mineral nutrient uptake in wheat. Ecotoxicology and Environmental Safety. 2021 Sep; 221: 112436. doi: 10.1016/j.ecoenv.2021.112436.
Rafique R, Zahra Z, Virk N, Shahid M, Pinelli E, Park TJ et al. Dose-dependent physiological responses of Triticum aestivum L. to soil applied TiO2 nanoparticles: alterations in chlorophyll content, H2O2 production, and genotoxicity. Agriculture, Ecosystems & Environment. 2018 Mar; 255: 95-101. doi: 10.1016/j.agee.2017.12.010.
Li X, Ghanizadeh H, Han Z, Wang Q, Li F, Qiu Y et al. Metabolic profile and physiological mechanisms underlying the promoting effects of TiO2NPs on the photosynthesis and growth of tomato. Scientia Horticulturae. 2023 Dec; 322: 112394. doi: 10.1016/j.scienta.2023.112394.
Karvar M, Azari A, Rahimi A, Maddah-Hosseini S, Ahmadi-Lahijani MJ. Titanium dioxide nanoparticles (TiO2-NPs) enhance drought tolerance and grain yield of sweet corn (Zea mays L.) under deficit irrigation regimes. Acta Physiologiae Plantarum. 2022 Feb; 44(2): 14. doi: 10.1007/s11738-021-03349-4.
Marchiol L, Mattiello A, Pošćić F, Fellet G, Zavalloni C, Carlino E et al. Changes in physiological and agronomical parameters of barley (Hordeum vulgare) exposed to cerium and titanium dioxide nanoparticles. International Journal of Environmental Research and Public Health. 2016 Mar; 13(3): 332. doi: 10.3390/ijerph13030332.
Omar SA, Elsheery NI, Pashkovskiy P, Kuznetsov V, Allakhverdiev SI, Zedan AM. Impact of titanium oxide nanoparticles on growth, pigment content, membrane stability, DNA damage, and stress-related gene expression in Vicia faba under saline conditions. Horticulturae. 2023 Sep; 9(9): 1030. doi: 10.3390/horticulturae9091030.
Zhang W, Long J, Geng J, Li J, Wei Z. Impact of titanium dioxide nanoparticles on Cd phytotoxicity and bioaccumulation in rice (Oryza sativa L.). International Journal of Environmental Research and Public Health. 2020 May; 17(9): 2979. doi: 10.3390/ijerph17092979.
Ebrahimi A, Galavi M, Ramroudi M, Moaveni P. Effect of TiO2 nanoparticles on antioxidant enzymes activity and biochemical biomarkers in pinto bean (Phaseolus vulgaris L.). Journal of Molecular Biology Research. 2016 Jan; 6(1): 58. doi: 10.5539/jmbr.v6n1p58.
Choi HG. Effect of TiO2 nanoparticles on the yield and photophysiological responses of cherry tomatoes during the rainy season. Horticulturae. 2021 Dec; 7(12): 563. doi: 10.3390/horticulturae7120563.
Khater MS. Effect of titanium nanoparticles (TiO2) on growth, yield and chemical constituents of coriander plants. Arab Journal of Nuclear Science and Applications. 2015 Oct; 48(4): 187-94.
Nabi G, Anjum T, Aftab ZE, Rizwana H, Akram W. TiO2 nanoparticles: Green synthesis and their role in lessening the damage of Colletotrichum graminicola in sorghum. Food Science & Nutrition. 2024 Oct; 12(10): 7379-91. doi: 10.1002/fsn3.4297.
Mohammadi H, Parviz L, Beyrami A, Anosheh-Bonab F, Ghorbanpour M. Exposure to TiO2 nanoparticles (NPs) and zeolite stimulates growth, physiology, and phytochemical characteristics and elevates Mentha piperita L. tolerance to salinity stress. Industrial Crops and Products. 2024 May; 211: 118228. doi: 10.1016/j.indcrop.2024.118228.
Kralova K and Jampilek J. Applications of nanomaterials in plant disease management and protection. InNanotechnology in agriculture and agroecosystems. 2023 Jan: 239-296. doi: 10.1016/B978-0-323-99446-0.00013-1.
Simonin M, Richaume A, Guyonnet JP, Dubost A, Martins JM, Pommier T. Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers. Scientific Reports. 2016 Sep; 6(1): 33643. doi: 10.1038/srep33643.
Siddiqui ZA, Khan MR, Abd_Allah EF, Parveen A. Titanium dioxide and zinc oxide nanoparticles affect some bacterial diseases, and growth and physiological changes of beetroot. International Journal of Vegetable Science. 2019 Sep; 25(5): 409-30. doi: 10.1080/19315260.2018.1523267.
Gohari G, Mohammadi A, Akbari A, Panahirad S, Dadpour MR, Fotopoulos V et al. Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Scientific Reports. 2020 Jan; 10(1): 912. doi: 10.1038/s41598-020-57794-1.
Boorboori MR and Li J. The effect of salinity stress on tomato defense mechanisms and exogenous application of salicylic acid, abscisic acid, and melatonin to reduce salinity stress. Soil Science and Plant Nutrition. 2024 Sep: 1-8. doi: 10.1080/00380768.2024.2405834.
Abdel Latef AA, Srivastava AK, El‐sadek MS, Kordrostami M, Tran LS. Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions. Land Degradation & Development. 2018 Apr; 29(4): 1065-73. doi: 10.1002/ldr.2780.
Tumburu L, Andersen CP, Rygiewicz PT, Reichman JR. Molecular and physiological responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis. Environmental Toxicology and Chemistry. 2017 Jan; 36(1): 71-82. doi: 10.1002/etc.3500.
Ullah F, Bano A, Nosheen A. Effects of plant growth regulators on growth and oil quality of canola (Brassica napus L.) under drought stress. Pakistan Journal of Botany. 2012 Dec; 44(6): 1873-80.
Aghdam MT, Mohammadi H, Ghorbanpour M. Effects of nanoparticulate anatase titanium dioxide on physiological and biochemical performance of Linum usitatissimum (Linaceae) under well-watered and drought stress conditions. Brazilian Journal of Botany. 2016 Mar; 39: 139-46. doi: 10.1007/s40415-015-0227-x.
Carlucci C, Degennaro L, Luisi R. Titanium dioxide as a catalyst in biodiesel production. Catalysts. 2019 Jan; 9(1): 75. doi: 10.3390/catal9010075.
Khattak A, Ullah F, Shinwari ZK, Mehmood S. The effect of titanium dioxide nanoparticles and salicylic acid on growth and biodiesel production potential of sunflower (Helianthus annuus L.) under water stress. Pakistan Journal of Botany. 2021 Sep; 53(6): 1987-95. doi: 10.30848/PJB2021-6(42).
Golami A, Abbaspour H, Hashemi-Moghaddam H, Gerami M. Photocatalytic Effect of TiO₂ Nanoparticles on Essential Oil of Rosmarinus Officinalis. Journal of Biochemical Technology. 2018; 9(4-2018): 50-4.
Yang X, Feng K, Wang G, Zhang S, Zhao J, Yuan X et al. Titanium dioxide nanoparticles alleviates polystyrene nanoplastics induced growth inhibition by modulating carbon and nitrogen metabolism via melatonin signaling in maize. Journal of Nanobiotechnology. 2024 May; 22(1): 262. doi: 10.1186/s12951-024-02537-x.
Eddy DR, Rahmawati D, Permana MD, Takei T, Noviyanti AR, Rahayu I. A review of recent developments in green synthesis of TiO2 nanoparticles using plant extract: Synthesis, characterization and photocatalytic activity. Inorganic Chemistry Communications. 2024 May: 112531. doi: 10.1016/j.inoche.2024.112531.
Mishra V, Mishra RK, Dikshit A, Pandey AC. Interactions of nanoparticles with plants: an emerging prospective in the agriculture industry. InEmerging Technologies and Management of Crop Stress Tolerance. 2014 Jan: 159-180. doi: 10.1016/B978-0-12-800876-8.00008-4.
Mariz-Ponte N, Dias CM, Silva AM, Santos C, Silva S. Low levels of TiO2-nanoparticles interact antagonistically with Al and Pb alleviating their toxicity. Plant Physiology and Biochemistry. 2021 Oct; 167: 1-0. doi: 10.1016/j.plaphy.2021.07.021.
Mandeh M, Omidi M, Rahaie M. In vitro influences of TiO 2 nanoparticles on barley (Hordeum vulgare L.) tissue culture. Biological Trace Element Research. 2012 Dec; 150: 376-80. doi: 10.1007/s12011-012-9480-z.
Kőrösi L, Pertics B, Schneider G, Bognár B, Kovács J, Meynen V et al. Photocatalytic inactivation of plant pathogenic bacteria using TiO2 nanoparticles prepared hydrothermally. Nanomaterials. 2020 Aug; 10(9): 1730. doi: 10.3390/nano10091730.
Rezaizad M, Hashemi-Moghaddam H, Abbaspour H, Gerami M, Mueller A. Photocatalytic effect of TiO2 nanoparticles on morphological and photochemical properties of stevia plant (Stevia rebaudiana Bertoni). Sugar Technology. 2019 Dec; 21(6): 1024-30. doi: 10.1007/s12355-019-00726-9.
Tan W, Peralta-Videa JR and Gardea-Torresdey JL. Interaction of titanium dioxide nanoparticles with soil components and plants: current knowledge and future research needs-a critical review. Environmental Science: Nano. 2018; 5(2): 257-78. doi: 10.1039/C7EN00985B.
Chavan S, Sarangdhar V, Nadanathangam V. Toxicological effects of TiO2 nanoparticles on plant growth promoting soil bacteria. Emerging Contaminants. 2020 Jan; 6: 87-92. doi: 10.1016/j.emcon.2020.01.003.
Degenkolb L, Kaupenjohann M, Klitzke S. The variable fate of Ag and TiO 2 nanoparticles in natural soil solutions-sorption of organic matter and nanoparticle stability. Water, Air, & Soil Pollution. 2019 Mar; 230: 1-4. doi: 10.1007/s11270-019-4123-z.
Dias MC, Santos C, Pinto G, Silva AM, Silva S. Titanium dioxide nanoparticles impaired both photochemical and non-photochemical phases of photosynthesis in wheat. Protoplasma. 2019 Jan; 256: 69-78. doi: 10.1007/s00709-018-1281-6.
Bakry AB, Abd-El-Monem AA, Abdallah MM, Al-Ashkar NM, El-Bassiouny HM. Impact of titanium-dioxide and zinc-oxide nanoparticles in improving wheat productivity under water stress conditions. SABRAO Journal of Breeding and Genetics. 2024 Apr; 56(2): 823-37. doi: 10.54910/sabrao2024.56.2.33.
Gatou MA, Syrrakou A, Lagopati N, Pavlatou EA. Photocatalytic TiO2-based nanostructures as a promising material for diverse environmental applications: a review. Reactions. 2024 Feb; 5(1): 135-94. doi: 10.3390/reactions5010007.
Ge Y, Schimel JP, Holden PA. Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environmental Science & Technology. 2011 Feb; 45(4): 1659-64. doi: 10.1021/es103040t.
You T, Liu D, Chen J, Yang Z, Dou R, Gao X et al. Effects of metal oxide nanoparticles on soil enzyme activities and bacterial communities in two different soil types. Journal of Soils and Sediments. 2018 Jan; 18: 211-21. doi: 10.1007/s11368-017-1716-2.
Kaur H, Kalia A, Manchanda P. Elucidating the effect of TiO2 nanoparticles on mung bean rhizobia via in vitro assay: Influence on growth, morphology, and plant growth promoting traits. Journal of Basic Microbiology. 2024 Mar; 64(3): 2300306. doi: 10.1002/jobm.202300306.
Sharma VK. Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment-a review. Journal of Environmental Science and Health Part A. 2009 Nov; 44(14): 1485-95. doi: 10.1080/10934520903263231.
Vijayaraj V, Liné C, Cadarsi S, Salvagnac C, Baqué D, Elger A et al. Transfer and ecotoxicity of titanium dioxide nanoparticles in terrestrial and aquatic ecosystems: a microcosm study. Environmental Science & Technology. 2018 Oct; 52(21): 12757-64. doi: 10.1021/acs.est.8b02970.
Shabbir S, Kulyar MF, Bhutta ZA, Boruah P, Asif M. Toxicological consequences of titanium dioxide nanoparticles (TiO2NPs) and their jeopardy to human population. BioNanoScience. 2021 Jun; 11(2): 621-32. doi: 10.1007/s12668-021-00836-3.
Rashid MM, Forte Tavčer P, Tomšič B. Influence of titanium dioxide nanoparticles on human health and the environment. Nanomaterials. 2021 Sep; 11(9): 2354. doi: 10.3390/nano11092354.
Luo Z, Li Z, Xie Z, Sokolova IM, Song L, Peijnenburg WJ et al. Rethinking nano‐TiO2 safety: overview of toxic effects in humans and aquatic animals. Small. 2020 Sep; 16(36): 2002019. doi: 10.1002/smll.202002019.
Poinern GE, Tripathy S, Fawcett D, editors. Harnessing Synthetic Nanotechnology-based Methodologies for Sustainable Green Applications. Child Registration Certificate Press; 2023 Jul. doi: 10.1201/9781003181422.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Futuristic Biotechnology
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open-access journal and all the published articles / items are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For comments editor@fbtjournal.com