Synthesis and Characterization of Mercury Complex Derived from Trimesic Acid

Synthesis and Characterization of Mercury Complex


  • Javed Hussain Shah Department of Chemistry, Government College University, Lahore, Pakistan
  • Shahzad Sharif Department of Chemistry, Government College University, Lahore, Pakistan
  • Rashid Rehman Department of Chemistry, Government College University, Lahore, Pakistan
  • Anum Arooj College of Earth and Environmental Sciences, University of The Punjab, Lahore, Pakistan



Atomic Force Microscopy, Cell Death, Microscopic Imaging, Trimesic Acid (TMA), Mercury Complex


The effects of mercury complexes on human body and cells vary depending on the extent of exposure and their pharmacological form. Objectives: To characterize mercury complex and then investigate the effects on cellular interaction via cell death. Methods: The synthesis of the mercury complex was carried out, and its characterization was done by FTIR, elemental percentage and powder X-ray diffraction (PXRD). The complex was analyzed through atomic force microscopy (AFM) and by microscopy imaging its surface morphology and cellular interaction were also studied. Results: The presence of the mercury-complex results in cell death in concentration and time dependent manner. Conclusions: The synthesized mercury-complex has the ability to harm cells.


Yang M, Wang Z, Li M, Yin Z, Butt HA. The synthesis, mechanisms, and additives for bio‐compatible polyvinyl alcohol hydrogels: A review on current advances, trends, and future outlook. Journal of Vinyl and Additive Technology. 2023 Nov; 29(6): 939-59. doi: 10.1002/vnl.21962.

Hébert K. Chronicle of a disaster foretold: scientific risk assessment, public participation, and the politics of imperilment in Bristol Bay, Alaska. Journal of the Royal Anthropological Institute. 2016 Apr; 22(S1): 108-26. doi: 10.1111/1467-9655.12396.

Dash SR and Kundu CN. Advances in nanomedicine for treatment of infectious diseases caused by viruses. Biomaterial Science. 2023 May; 11(10): 3431-49. doi: 10.1039/D2BM02066A.

Reedijk J. Medicinal applications of heavy-metal compound. Current Opinion in Chemical Biology. 1999 Apr; 3(2): 236-40. doi: 10.1016/S1367-5931(99)80037-4.

Fasae KD and Abolaji AO. Interactions and toxicity of non-essential heavy metals (Cd, Pb and Hg): lessons from Drosophila melanogaster. Current Opinion in Insect Science. 2022 Jun; 51: 100900. doi: 10.1016/j.cois.2022.100900.

Prasad MN, Hagemeyer J, Rengel Z. Heavy metals as essential nutrients. Heavy metal stress in plants: from molecules to ecosystems. Springer Science & Business Media; 1999. doi: 10.1007/978-3-662-07745-0.

Ajsuvakova OP, Tinkov AA, Aschner M, Rocha JB, Michalke B, Skalnaya MG et al. Sulfhydryl groups as targets of mercury toxicity. Coordination Chemistry Reviews. 2020 Aug; 417: 213343. doi: 10.1016/j.ccr.2020.213343.

Mon M, Lloret F, Ferrando‐Soria J, Martí‐Gastaldo C, Armentano D, Pardo E. Selective and efficient removal of mercury from aqueous media with the highly flexible arms of a BioMOF. Angewandte Chemie. 2016 Sep; 128(37): 11333-8. doi: 10.1002/ange.201606015.

Wang HF and Wu SP. Highly selective fluorescent sensors for mercury (II) ions and their applications in living cell imaging. Tetrahedron. 2013 Feb; 69(8): 1965-9. doi: 10.1016/j.tet.2012.12.075.

Yang L, Zhang Y, Wang F, Luo Z, Guo S, Strähle U. Toxicity of mercury: Molecular evidence. Chemosphere. 2020 Apr; 245: 125586. doi: 10.1016/j.chemosphere.2019.125586.

Gooding JJ, Hibbert DB, Yang W. Electrochemical metal ion sensors. Exploiting amino acids and peptides as recognition elements. Sensors. 2001 Aug; 1(3): 75-90. doi: 10.3390/s10300075.

Skyllberg U, Bloom PR, Qian J, Lin CM, Bleam WF. Complexation of mercury (II) in soil organic matter: EXAFS evidence for linear two-coordination with reduced sulfur groups. Environmental Science and Technology. 2006 Jul; 40(13): 4174-80. doi: 10.1021/es0600577.

Tutic A, Novakovic S, Lutovac M, Biocanin R, Ketin S, Omerovic N. The heavy metals in agrosystems and impact on health and quality of life. Open access Macedonian Journal of Medical Sciences. 2015 Jun; 3(2): 345. doi: 10.3889/oamjms.2015.048.

Briscoe GB, Cooksey BG, Růžička J, Williams M. Continuous substoichiometric determination of traces of mercury by radioactive isotope-dilution analysis. Talanta. 1967 Dec; 14(12): 1457-65. doi: 10.1016/0039-9140(67)80168-1.

Blum JD, Sherman LS, Johnson MW. Mercury isotopes in earth and environmental sciences. Annual Review of Earth and Planetary Sciences. 2014 May; 42: 249-69. doi: 10.1146/annurev-earth-050212-124107.

Gehrke GE, Blum JD, Slotton DG, Greenfield BK. Mercury isotopes link mercury in San Francisco Bay forage fish to surface sediments. Environmental Science and Technology. 2011 Feb; 45(4): 1264-70. doi: 10.1021/es103053y.

Shenker BJ, Berthold P, Rooney C, Vitale L, DeBolt K, Shapiro IM. Immunotoxic effects of mercuric compounds on human lymphocytes and monocytes. III. Alterations in B-cell function and viability. Immunopharmacology and Immunotoxicology. 1993 Jan; 15(1): 87-112. doi: 10.3109/08923979309066936.

Cavallini A, Natali L, Durante M, Maserti B. Mercury uptake, distribution and DNA affinity in durum wheat (Triticum durum Desf.) plants. Science of the Total Environment. 1999 Dec; 243: 119-27. doi: 10.1016/S0048-9697(99)00367-8.

Patra M and Sharma A. Mercury toxicity in plants. The Botanical Review. 2000 Jul; 66: 379-422. doi: 10.1007/BF02868923.

Christie NT, Cantoni O, Evans RM, Meyn RE, Costa M. Use of mammalian DNA repair-deficient mutants to assess the effects of toxic metal compounds on DNA. Biochemical Pharmacology. 1984 May; 33(10): 1661-70. doi: 10.1016/0006-2952(84)90289-2.

Costa M, Christie NT, Cantoni O, Zelikoff JT, Wang XW, Rossman TG. DNA damage by mercury compounds: an overview. Advances in Mercury Toxicology. 1991: 255-73. doi: 10.1007/978-1-4757-9071-9_16.

Mutlu Ag and Yildiz H. Civa Klorürün mtDNA'da Akut Etkisi. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2017 Nov; 8(Ek (1): 206-10. doi: 10.29048/makufebed.320127.

Shumilla JA. Cellular and molecular effects of chromium on the activity and expression of fibrinolytic proteins in epithelial cells. Dartmouth College: ProQuest; 1999.

Hartwig A. Carcinogenicity of metal compounds: possible role of DNA repair inhibition. Toxicology Letters. 1998 Dec; 102: 235-9. doi: 10.1016/S0378-4274(98)00312-9.

Crespo-López ME, Macêdo GL, Pereira SI, Arrifano GP, Picanco-Diniz DL, do Nascimento JL et al. Mercury and human genotoxicity: critical considerations and possible molecular mechanisms. Pharmacological Research. 2009 Oct; 60(4): 212-20. doi: 10.1016/j.phrs.2009.02.011.

Cantoni O and Costa M. Correlations of DNA strand breaks and their repair with cell survival following acute exposure to mercury (II) and X-rays. Molecular Pharmacology. 1983 Jul; 24(1): 84-9.

Yuan B, Wang DX, Zhu LN, Lan YL, Cheng M, Zhang LM et al. Dinuclear Hg II tetracarbene complex-triggered aggregation-induced emission for rapid and selective sensing of Hg 2+ and organomercury species. Chemical Science. 2019 Mar; 10(15): 4220-6. doi: 10.1039/C8SC05714A.

Kim YO, Bae HJ, Cho E, Kang H. Exogenous glutathione enhances mercury tolerance by inhibiting mercury entry into plant cells. Frontiers in Plant Science. 2017 May; 8: 683. doi: 10.3389/fpls.2017.00683.

Nielsen JB and Hultman P. Mercury-induced autoimmunity in mice. Environmental Health Perspectives. 2002 Oct; 110(5): 877-81. doi: 10.1289/ehp.02110s5877.

Cantoni O, Christie NT, Swann A, Drath DB, Costa M. Mechanism of HgCl2 cytotoxicity in cultured mammalian cells. Molecular Pharmacology. 1984 Sep; 26(2): 360-8.

Cantoni O, Sestili P, Palomba L, Guidarelli A, Cattabeni F, Murray D. Isolation and preliminary characterization of a Chinese hamster ovary cell line with high-degree resistance to hydrogen peroxide. Biochemical Pharmacology. 1996 Apr; 51(8): 1021-9. doi: 10.1016/0006-2952(95)02436-0.

Lodh A, Thool K, Samajdar I. X-ray diffraction for the determination of residual stress of crystalline material: An overview. Transactions of the Indian Institute of Metals. 2022 Apr; 75(4): 983-95. doi: 10.1007/s12666-022-02540-6.

Zhang B, Chen J, Coddet C. Microstructure and transformation behavior of in-situ shape memory alloys by selective laser melting Ti–Ni mixed powder. Journal of Materials Science and Technology. 2013 Sep; 29(9): 863-7. doi: 10.1016/j.jmst.2013.05.006.

Znaidi L, Illia GS, Guennic RL, Sanchez C, Kanaev A. Elaboration of ZnO thin films with preferential orientation by a soft chemistry route. Journal of Sol-Gel Science and Technology. 2003 Jan; 26(1-3): 817-21. doi: 10.1023/A:1020795515478.

Leite FL and Herrmann PS. Application of atomic force spectroscopy (AFS) to studies of adhesion phenomena: a review. Journal of Adhesion Science and Technology. 2005 Jan; 19(3-5): 365-405. doi: 10.1163/1568561054352667.

Metal Availability and Bioconcentration in Plants. Greger M. Heavy Metal Stress in Plants. Berlin, Heidelberg: Springer; 1999.

Vallee BL and Ulmer DD. Biochemical effects of mercury, cadmium, and lead. Annual Review of Biochemistry. 1972 Jul; 41(1): 91-128. doi: 10.1146/

Tortolini C, Bollella P, Antonelli ML, Antiochia R, Mazzei F, Favero G. DNA-based biosensors for Hg2+ determination by polythymine–methylene blue modified electrodes. Biosensors and Bioelectronics. 2015 May; 67: 524-31. doi: 10.1016/j.bios.2014.09.031.

Olivero-Verbel J, Carranza-Lopez L, Caballero-Gallardo K, Ripoll-Arboleda A, Muñoz-Sosa D. Human exposure and risk assessment associated with mercury pollution in the Caqueta River, Colombian Amazon. Environmental Science and Pollution Research. 2016 Oct; 23: 20761-71. doi: 10.1007/s11356-016-7255-3.



DOI: 10.54393/fbt.v3i03.57
Published: 2023-12-31

How to Cite

Shah, J. H., Sharif, S., Rehman, R., & Arooj, A. (2023). Synthesis and Characterization of Mercury Complex Derived from Trimesic Acid: Synthesis and Characterization of Mercury Complex. Futuristic Biotechnology, 3(03), 32–38.