Assessing the Impact of Xenobiotic (Bisphenol A) on Blood Physiology and Biochemical Alterations Using Labeo Rohita Fish as a Model Organism

Impact of Bisphenol A on Blood Physiology in Labeo Rohita


  • Shabbir Ahmad Department of Zoology, University of Okara, Okara, Pakistan
  • Hasnain Akmal Department of Zoology, University of Okara, Okara, Pakistan
  • Khurram Shahzad Department of Zoology, University of Okara, Okara, Pakistan



Bisphenol A, Hematobiochemical, Labeo Rohita


Bisphenol A (BPA) is an emerging pollutant that is extensively used in the manufacturing of various industrial products and is associated with adverse effects on both human and wildlife health. Objective: Present study aimed to evaluate the effects of bisphenol A on hematobiochemical biomarkers in freshwater Labeo rohita. Methods: For the purpose of this investigation, healthy fish were divided into four groups (A–D). Group A was treated as a BPA-free control group, while Group B, Group C, and Group D were exposed to various doses of BPA such as 400, 800, and 1600 µg/L, respectively for 21 days. Results: BPA-exposed fish showed different physical and behavioral abnormalities in dose-dependent ways. Results indicated significant increase in the concentrations of various hematobiochemical parameters, such as WBCs, MCHC, RDW, RDW-SD, platelets, neutrophils, triglycerides, cholesterol, ALT, AST, blood glucose, urea, T3, TSH and creatinine, while HGB, RBCs, HCT, MCV, MCH, PDW, lymphocytes, HDL, LDL, VLDL, total protein, globulin, albumin and T4 concentrations were decreased. Conclusions: The current study concluded that bisphenol A causes deleterious effects by disrupting physiological and hematobiochemical parameters alteration in exposed fish.


Hussain R, Ghaffar A, Abbas G, Jabeen G, Khan I, Abbas RZ et al. Thiamethoxam at sublethal concentrations induces histopathological, serum biochemical alterations and DNA damage in fish (Labeo rohita). Toxin Reviews. 2022 Jan; 41(1): 154-64. doi: 10.1080/15569543.2020.1855655.

Scarano WR, Bedrat A, Alonso-Costa LG, Aquino AM, Fantinatti BE, Justulin LA et al. Exposure to an environmentally relevant phthalate mixture during prostate development induces microRNA upregulation and transcriptome modulation in rats. Toxicological Sciences. 2019 Sep; 171(1): 84-97. doi: 10.1093/toxsci/kfz141.

Goksøyr A. Endocrine disruptors in the marine environment: mechanisms of toxicity and their influence on reproductive processes in fish. Journal of Toxicology and Environmental Health, Part A. 2006 Jan; 69(1-2): 175-84. doi: 10.1080/15287390500259483.

Farooq R, Hafeez MA, Oneeb M, Rafique A, Ashraf K, Aslam F et al. Molecular characterization and phylogenetic analysis of Babesia species isolated from domestic cattle. Pakistan Veterinary Journal. 2020 Aug; 40(2): 224-228. doi:10.29261/pakvetj/2020.003.

Brossa L, Marcé RM, Borrull F, Pocurull E. Application of on-line solid-phase extraction-gas chromatography-mass spectrometry to the determination of endocrine disruptors in water samples. Journal of Chromatography A. 2002 Jul; 963(1-2): 287-94. doi: 10.1016/S0021-9673(02)00224-8.

Vasu G, Sujatha LB, Manju Bashini J. Histological changes in tilapia exposed to bisphenol A (BPA) compound. International Journal of Advanced Scientific Research and Management. 2019 Apr; 4(4): 267-82.

Naderi M, Wong MY, Gholami F. Developmental exposure of zebrafish (Danio rerio) to bisphenol-S impairs subsequent reproduction potential and hormonal balance in adults. Aquatic Toxicology. 2014 Mar; 148: 195-203. doi: 10.1016/j.aquatox.2014.01.009.

Vandenberg LN, Chahoud I, Heindel JJ, Padmanabhan V, Paumgartten FJ, Schoenfelder G. Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Ciencia and Saude Coletiva. 2012 Feb; 17: 407-34. doi: 10.1590/S1413-81232012000200015.

Flint S, Markle T, Thompson S, Wallace E. Bisphenol A exposure, effects, and policy: a wildlife perspective. Journal of Environmental Management. 2012 Aug; 104: 19-34. doi: 10.1016/j.jenvman.2012.03.021.

Kang JH, Aasi D, Katayama Y. Bisphenol A in the aquatic environment and its endocrine-disruptive effects on aquatic organisms. Critical Reviews In Toxicology. 2007 Jan; 37(7): 607-25. doi: 10.1080/10408440701493103.

Crain DA, Eriksen M, Iguchi T, Jobling S, Laufer H, LeBlanc GA et al. An ecological assessment of bisphenol-A: evidence from comparative biology. Reproductive Toxicology. 2007 Aug; 24(2): 225-39. doi: 10.1016/j.reprotox.2007.05.008.

Pironti C, Ricciardi M, Proto A, Bianco PM, Montano L, Motta O. Endocrine-disrupting compounds: An overview on their occurrence in the aquatic environment and human exposure. Water. 2021 May; 13(10): 1347. doi: 10.3390/w13101347.

Rochester JR and Bolden AL. Bisphenol S and F: a systematic review and comparison of the hormonal activity of bisphenol A substitutes. Environmental Health Perspectives. 2015 Jul; 123(7): 643-50. doi: 10.1289/ehp.1408989.

Ahmed WM, Moselhy WA, Nabil TM. Bisphenol A toxicity in adult male rats: hematological, biochemical and histopathological approach. Global Veterinaria. 2015; 14(2): 228-38.

Rogers JA and Mirza RS. The effects of bisphenol-A on the immune system of wild yellow perch, Perca flavescens. Water, Air, and Soil Pollution. 2013 Oct; 224: 1-6. doi: 10.1007/s11270-013-1728-5.

Keum YH, Jee JH, Lee OH, Park SI, Kang JC. In vivo effects of bisphenol A exposure on haematological parameters in Korean rockfish, Sebastes schlegeli. Journal of Fish Pathology. 2005 Jan; 18(3): 293-300.

Mahmood A, Ahmad S, Akmal H, Shahzad K. Evaluation of Hemotoxic, Hepatotoxic and Nephrotoxic Potential of Profenofos-based Insecticide in Freshwater Labeo rohita Fish at Low Concentrations: Evaluation of Profenofos-based Insecticide's Potential. Pakistan BioMedical Journal. 2023 Nov; 6(11): 32-40. doi: 10.54393/pbmj.v6i11.920.

Karan S, Dash P, Kaushik H, Sahoo PK, Garg LC, Dixit A. Structural and functional characterization of recombinant interleukin-10 from Indian major carp Labeo rohita. Journal of Immunology Research. 2016 Jan; 2016: 3962596. doi: 10.1155/2016/3962596.

Burgos-Aceves MA, Lionetti L, Faggio C. Multidisciplinary haematology as prognostic device in environmental and xenobiotic stress-induced response in fish. Science of the Total Environment. 2019 Jun; 670: 1170-83. doi: 10.1016/j.scitotenv.2019.03.275.

Kwak HI, Bae MO, Lee MH, Lee YS, Lee BJ, Kang KS et al. Effects of nonylphenol, bisphenol A, and their mixture on the viviparous swordtail fish (Xiphophorus helleri). Environmental Toxicology and Chemistry: An International Journal. 2001 Apr; 20(4): 787-95. doi: 10.1002/etc.5620200414.

Akram R, Iqbal R, Hussain R, Jabeen F, Ali M. Evaluation of oxidative stress, antioxidant enzymes and genotoxic potential of bisphenol A in fresh water bighead carp (Aristichthys nobils) fish at low concentrations. Environmental Pollution. 2021 Jan; 268: 115896. doi: 10.1016/j.envpol.2020.115896.

Huang Q, Liu Y, Chen Y, Fang C, Chi Y, Zhu H et al. New insights into the metabolism and toxicity of bisphenol A on marine fish under long-term exposure. Environmental Pollution. 2018 Nov; 242: 914-21. doi: 10.1016/j.envpol.2018.07.048.

Alves SR, Severino PC, Ibbotson DP, da Silva AZ, Lopes FR, Sáenz LA et al. Effects of furadan in the brown mussel Perna perna and in the mangrove oyster Crassostrea rhizophorae. Marine Environmental Research. 2002 Sep; 54(3-5): 241-5. doi: 10.1016/S0141-1136(02)00138-1.

Ghaffar A, Hussain R, Aslam M, Abbas G, Khan A. Arsenic and urea in combination alters the hematology, biochemistry and protoplasm in exposed rahu fish (Labeo rohita)(Hamilton, 1822). Turkish Journal of Fisheries and Aquatic Sciences. 2016 Jun; 16(2): 289-96. doi: 10.4194/1303-2712-v16_2_09.

Abraham CV and Gerarde HW. An ultramicromethod for the determination of blood glucose using modified o-toluidine reagent. Microchemical Journal. 1976 Mar; 21(1): 14-20. doi: 10.1016/0026-265X(76)90079-5.

Kumar P, Pal AK, Sahu NP, Jha AK, Priya P. Biochemical and physiological stress responses to heat shock and their recovery in Labeo rohita fingerlings. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. 2015 Jun; 85: 485-90. doi: 10.1007/s40011-014-0357-0.

Young D. S. Effects of drugs on clinical laboratory tests. Annals Of Clinical Biochemistry. 1997 Nov; 34 (6): 579–581. doi: 10.1177/000456329703400601.

Hassan AA, El-Khalili MM, Hussein NG, Kido R. Changes in serum lipid profile and esterases of rats after sublethal daily doses of dimethoate. The Journal of the Egyptian Public Health Association. 1995 Jan; 70(3-4): 431-47.

Zaahkouk SA, Helal EG, Hassan AB. Changes in some hematological and biochemical parameters of adult male rats in response to 8-hydroxy quinalidine N, N-dimethyl carbamate dimethyl sulphate. Al-Azhar Bulletin of Science.1996; 7(2): 1401-11.

Hadie SN, Ghani N, Abdullah MS, Hassan A. Effects of Carbofuran on Thyroid Stimulating Hormone in Sprague-Dawley Rats. International Medical Journal. 2013 Apr; 20(2): 177-80.

Kim M, Jeong JS, Kim H, Hwang S, Park IH, Lee BC et al. Low dose exposure to di-2-ethylhexylphthalate in juvenile rats alters the expression of genes related with thyroid hormone regulation. Biomolecules and Therapeutics. 2018 Sep; 26(5): 512. doi: 10.4062/biomolther.2018.076.

Lemly AD. Symptoms and implications of selenium toxicity in fish: the Belews Lake case example. Aquatic Toxicology. 2002 Apr; 57(1-2): 39-49. doi: 10.1016/S0166-445X(01)00264-8.

Andújar N, Gálvez-Ontiveros Y, Zafra-Gómez A, Rodrigo L, Álvarez-Cubero MJ, Aguilera M et al. Bisphenol A analogues in food and their hormonal and obesogenic effects: a review. Nutrients. 2019 Sep; 11(9): 2136. doi: 10.3390/nu11092136.

Verma G, Khan MF, Akhtar W, Alam MM, Akhter M, Shaquiquzzaman M. Molecular interactions of bisphenols and analogs with glucocorticoid biosynthetic pathway enzymes: an in silico approach. Toxicology Mechanisms and Methods. 2018 Jan; 28(1): 45-54. doi: 10.1080/15376516.2017.1356415.

Wang Q, Yang H, Yang M, Yu Y, Yan M, Zhou L et al. Toxic effects of bisphenol A on goldfish gonad development and the possible pathway of BPA disturbance in female and male fish reproduction. Chemosphere. 2019 Apr; 221: 235-45. doi: 10.1016/j.chemosphere.2019.01.033.

Murmu S and Shrivastava VK. Vitamin-C work as an antidote against bisphenol-A toxicity in freshwater fish Cirrhinus mrigala (Ham.). Egyptian Academic Journal of Biological Sciences, B. Zoology. 2014 Jun; 6(1): 83-7. doi: 10.21608/eajbsz.2014.13497.

Krishnapriya K, Shobana G, Narmadha S, Ramesh M, Maruthappan V. Sublethal concentration of bisphenol A induces hematological and biochemical responses in an Indian major carp Labeo rohita. Ecohydrology and Hydrobiology. 2017 Nov; 17(4): 306-13. doi: 10.1016/j.ecohyd.2017.06.003.

Goundadkar BB and Katti P. Environmental estrogen (s) induced swimming behavioural alterations in adult zebrafish (Danio rerio). Environmental Toxicology and Pharmacology. 2017 Sep; 54: 146-54. doi: 10.1016/j.etap.2017.07.001.

Sharma P and Chadha P. Bisphenol A induced toxicity in blood cells of freshwater fish Channa punctatus after acute exposure. Saudi Journal of Biological Sciences. 2021 Aug; 28(8): 4738-50. doi: 10.1016/j.sjbs.2021.04.088.

Cervantes-Camacho I, Guerrero-Estévez SM, López MF, Alarcón-Hernández E, López-López E. Effects of Bisphenol A on Foxl2 gene expression and DNA damage in adult viviparous fish Goodea atripinnis. Journal of Toxicology and Environmental Health, Part A. 2020 Feb; 83(3): 95-112. doi: 10.1080/15287394.2020.1730282.

Namratha ML, Lakshman M, Jeevanalatha M, Kumar BA. Hematological alterations induced by glyphosate and ameliorative effect of ascorbic acid in Wistar rats. Continental Veterinary Journal. 2021 Nov; 1(1): 32-6. doi: 10.5455/ijlr.20191012074803.

Khayatzadeh J and Abbasi E. The effects of heavy metals on aquatic animals. InThe 1st International Applied Geological Congress, Department of Geology, Islamic Azad University-Mashad Branch, Iran. 2010 Apr; (1): 26-28.

Authman MM, Ibrahim SA, El-Kasheif MA, Gaber HS. Heavy metals pollution and their effects on gills and liver of the Nile Catfish inhabiting El-Rahawy Drain, Egypt. Global Journal of Veterinary Medicine and Research. 2013; 10(2): 103-5. doi: 10.5829/idosi.gv.2013.10.2.71226.

Mekkawy IA, Mahmoud UM, Mohammed RH. Protective effects of tomato paste and vitamin E on atrazine-induced hematological and biochemical characteristics of Clarias gariepinus (Burchell, 1822). Global Advanced Research Journal of Environmental Science and Toxicology. 2013; 2(1): 11-21.

Osman AG, Koutb M, Sayed AE. Use of hematological parameters to assess the efficiency of quince (Cydonia oblonga Miller) leaf extract in alleviation of the effect of ultraviolet-A radiation on African catfish Clarias gariepinus (Burchell, 1822). Journal of Photochemistry and Photobiology B: Biology. 2010 Apr; 99(1): 1-8. doi: 10.1016/j.jphotobiol.2010.01.002.

Singh NN and Srivastava AK. Haematological parameters as bioindicators of insecticide exposure in teleosts. Ecotoxicology. 2010 Jun; 19: 838-54. doi: 10.1007/s10646-010-0465-4.

Ramesh M, Sankaran M, Veera-Gowtham V, Poopal RK. Hematological, biochemical and enzymological responses in an Indian major carp Labeo rohita induced by sublethal concentration of waterborne selenite exposure. Chemico-Biological Interactions. 2014 Jan; 207: 67-73. doi: 10.1016/j.cbi.2013.10.018.

Afzal G, Ahmad HI, Hussain R, Jamal A, Kiran S, Hussain T et al. Bisphenol A induces histopathological, hematobiochemical alterations, oxidative stress, and genotoxicity in common carp (Cyprinus carpio L.). Oxidative Medicine and Cellular Longevity. 2022 Jan; 2022: 5450421. doi: 10.1155/2022/5450421.

Asenuga ER, Olajuyigbe FM, Akinmoladun AC, Fasakin EA. Deeper Insights into the Biochemical, Hematological and Histological Changes Induced by Bisphenol A Exposure in Adult Male African Catfish (Clarias gariepinus). Research Square. 2022 Jun; 1. doi: 10.21203/

Senthil Kumaran S, Kavitha C, Ramesh M, Grummt T. Toxicity studies of nonylphenol and octylphenol: hormonal, hematological and biochemical effects in Clarias gariepinus. Journal of Applied Toxicology. 2011 Nov; 31(8): 752-61. doi: 10.1002/jat.1629.

Hamadi Abid Q and H Hassan A. Effect of bisphenol-A-on reproductive system of female rats (Rattus Norvegicus). Journal Of Kerbala University. 2017 May; 13(1): 56-62.

El-Bouhy ZM, Mohamed FA, Elashhab MW, El-Houseiny W. Toxicity bioassay and sub-lethal effects of profenofos-based insecticide on behavior, biochemical, hematological, and histopathological responses in Grass carp (Ctenopharyngodon idella). Ecotoxicology. 2023 Mar; 32(2): 196-210. doi: 10.1007/s10646-023-02628-9.

Yaghoobi Z, Safahieh A, Ronagh MT, Movahedinia A, Mousavi SM. Hematological changes in yellowfin seabream (Acanthopagrus latus) following chronic exposure to bisphenol A. Comparative Clinical Pathology. 2017 Nov; 26: 1305-13. doi: 10.1007/s00580-017-2530-3.

Sawhney AK and Johal MS. Erythrocyte alterations induced by malathion in Channa punctatus (Bloch). Bulletin of Environmental Contamination and Toxicology. 2000 Mar; 64(3): 398-405. doi: 10.1007/s001280000014.

Narra MR. Single and cartel effect of pesticides on biochemical and haematological status of Clarias batrachus: A long-term monitoring. Chemosphere. 2016 Feb; 144: 966-74. doi: 10.1016/j.chemosphere.2015.09.065.

Babu S, Uppu S, Claville MO, Uppu RM. Prooxidant actions of bisphenol A (BPA) phenoxyl radicals: implications to BPA-related oxidative stress and toxicity. Toxicology Mechanisms and Methods. 2013 May; 23(4): 273-80. doi: 10.3109/15376516.2012.753969.

Meeker JD, Calafat AM, Hauser R. Urinary bisphenol A concentrations in relation to serum thyroid and reproductive hormone levels in men from an infertility clinic. Environmental Science and Technology. 2010 Feb; 44(4): 1458-63. doi: 10.1021/es9028292.

Saravanan M, Kumar KP, Ramesh M. Haematological and biochemical responses of freshwater teleost fish Cyprinus carpio (Actinopterygii: Cypriniformes) during acute and chronic sublethal exposure to lindane. Pesticide Biochemistry and Physiology. 2011 Jul; 100(3): 206-11. doi: 10.1016/j.pestbp.2011.04.002.

Reddy PM, Philip GH, Bashamohideen M. Fenvalerate induced biochemical changes in the selected tissues of freshwater fish, Cyprinus carpio. Biochemistry International. 1991 Apr; 23(6): 1087-96.

Alwan SF, Hadi AA, Shokr AE. Alterations in hematological parameters of fresh water fish, Tilapia zillii, exposed to aluminum. Journal of Science and its Applications. 2009 Apr; 3(1): 12-9.

Bantu NA, Zenebehagos Z, Chaitanya K. Toxic effect of profenofos on blood parameters in the freshwater fish, Labeo rohita (Hamilton). Innovate International Journal of Medical and Pharmaceutical Sciences. 2017 Mar; 2(2): 14-8. doi: 10.24018/10.24018/iijmps.2018.v1i1.22.

Barnhoorn IE and Van Vuren JH. The use of different enzymes in feral freshwater fish as a tool for the assessment of water pollution in South Africa. Ecotoxicology and Environmental Safety. 2004 Oct; 59(2): 180-5. doi: 10.1016/j.ecoenv.2003.09.004.

Ozaydın T, Oznurlu Y, Sur E, Celik I, Uluısık D, Dayan MO. Effects of bisphenol A on antioxidant system and lipid profile in rats. Biotechnic and Histochemistry. 2018 May; 93(4): 231-8. doi: 10.1080/10520295.2017.1420821.

Pinafo MS, Benedetti PR, Gaiotte LB, Costa FG, Schoffen JP, Fernandes GS et al. Effects of Bauhinia forficata on glycaemia, lipid profile, hepatic glycogen content and oxidative stress in rats exposed to Bisphenol A. Toxicology Reports. 2019 Jan; 6: 244-52. doi: 10.1016/j.toxrep.2019.03.001.

Hassan ZK, Elobeid MA, Virk P, Omer SA, ElAmin M, Daghestani MH et al. Bisphenol A induces hepatotoxicity through oxidative stress in rat model. Oxidative Medicine and Cellular Longevity. 2012 Jul; 2012: 194829. doi: 10.1155/2012/194829.

Jayashree S, Indumathi D, Akilavalli N, Sathish S, Selvaraj J, Balasubramanian K. Effect of Bisphenol-A on insulin signal transduction and glucose oxidation in liver of adult male albino rat. Environmental Toxicology and Pharmacology. 2013 Mar; 35(2): 300-10. doi: 10.1016/j.etap.2012.12.016.

Eweda SM, Newairy AS, Abdou HM, Gaber AS. Bisphenol A‑induced oxidative damage in the hepatic and cardiac tissues of rats: The modulatory role of sesame lignans. Experimental and Therapeutic Medicine. 2020 Jan; 19(1): 33-44. doi: 10.3892/etm.2019.8193.

Abdel‐Tawwab M and Hamed HS. Effect of bisphenol A toxicity on growth performance, biochemical variables, and oxidative stress biomarkers of Nile tilapia, Oreochromis niloticus (L.). Journal of Applied Ichthyology. 2018 Oct; 34(5): 1117-25. doi: 10.1111/jai.13763.

Shi R, Liu Z, Liu T. The antagonistic effect of bisphenol A and nonylphenol on liver and kidney injury in rats. Immunopharmacology and Immunotoxicology. 2021 Sep; 43(5): 527-35. doi: 10.1080/08923973.2021.1950179.

Alkalby JM. Effect of bisphenol a on thyroid, liver and testicular functions in adult male rats. Basrah Journal of Veterinary Research. 2015 Jul; 14(1): 187-206. doi: 10.33762/bvetr.2015.102436.

Faheem M and Bhandari RK. Detrimental effects of bisphenol compounds on physiology and reproduction in fish: a literature review. Environmental Toxicology and Pharmacology. 2021 Jan; 81: 103497. doi: 10.1016/j.etap.2020.103497.

Hadi A, Shokr A, Alwan S. Effects of aluminum on the biochemical parameters of fresh waterfish Tilapia zillii. Journal of Applied Sciences. 2009 Apr; 3(1): 33-41.

Ahmed RG. Maternal bisphenol A alters fetal endocrine system: Thyroid adipokine dysfunction. Food and Chemical Toxicology. 2016 Sep; 95: 168-74. doi: 10.1016/j.fct.2016.06.017.

Qiu W, Chen J, Li Y, Chen Z, Jiang L, Yang M et al. Oxidative stress and immune disturbance after long-term exposure to bisphenol A in juvenile common carp (Cyprinus carpio). Ecotoxicology and Environmental Safety. 2016 Aug; 130: 93-102. doi: 10.1016/j.ecoenv.2016.04.014.

Ambühl PM. Protein intake in renal and hepatic disease. International Journal for Vitamin and Nutrition Research. 2011 Mar; 81(2): 162. doi: 10.1024/0300-9831/a000056.

Girón-Pérez MI, Santerre A, Gonzalez-Jaime F, Casas-Solis J, Hernández-Coronado M, Peregrina-Sandoval J et al. Immunotoxicity and hepatic function evaluation in Nile tilapia (Oreochromis niloticus) exposed to diazinon. Fish & Shellfish Immunology. 2007 Oct; 23(4): 760-9. doi: 10.1016/j.fsi.2007.02.004.

Roche M, Rondeau P, Singh NR, Tarnus E, Bourdon E. The antioxidant properties of serum albumin. Federation of European Biochemical Societies letters. 2008 Jun; 582(13): 1783-7. doi: 10.1016/j.febslet.2008.04.057.

Kaysen GA, Dubin JA, Müller HG, Rosales L, Levin NW, Mitch WE. Clinical Nephrology-Epidemiology-Clinical Trials Inflammation and reduced albumin synthesis associated with stable decline in serum albumin in hemodialysis patients. Kidney International. 2004 Apr; 65(4): 1408-15. doi: 10.1111/j.1523-1755.2004.00520.x.



DOI: 10.54393/fbt.v4i02.122
Published: 2024-06-30

How to Cite

Ahmad, S., Akmal, H., & Shahzad, K. (2024). Assessing the Impact of Xenobiotic (Bisphenol A) on Blood Physiology and Biochemical Alterations Using Labeo Rohita Fish as a Model Organism: Impact of Bisphenol A on Blood Physiology in Labeo Rohita. Futuristic Biotechnology, 4(02), 10–18.



Orginal Articles