Review Article

Eco-Friendly Synthesis Methods of Gold Nanoparticles, Their Characterization and Applications in Diagnostic, Therapeutic and Sensors

Aqsa Jamshaid¹, Shumaila Ibrahim¹, Adeeba Ali¹, Manam Walait⁵, Sami Ullah¹, Muhammad Bin Saleem¹ and Huda Rehman Mir²

¹Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
²Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan

ARTICLE INFO

Keywords:
Gold Nanoparticles, Surface Plasmon Resonance, Microbe-Facilitated Synthesis

How to Cite:

*Corresponding Author:
Manam Walait
Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
manam.walait@ucp.edu.pk

Received Date:16 November, 2023
Acceptance Date:2 March, 2024
Published Date: 31 March, 2024

INTRODUCTION

Nanotechnology is manipulation of molecules at nanoscale to make them useful for various purposes. The size of nanoparticles is “10-1000 nm” [1]. Various kinds of nanoparticles including carbon nanotubes, silver, metal, gold, magnetic nanoparticles etc. are being used in various fields. Among them Gold nanoparticles are most widely used. AuNPs are small particles of gold that form a suspension (colloidal solution) in water. Their diameter is “10-100nm”. Colloidal gold turns dark red due to interaction between its free electrons and light [2-4]. Gold nanoparticles (AuNPs) are preferred due to their unique properties like easy synthesis, shape and size-dependent electronic and optical characteristics, surface plasmon resonance, low resistance, high stability, high catalytic activity etc.[5]. AuNPs are synthesized by various methods using polymers, chemicals, UV light etc. but these methods are not ecofriendly and are too expensive so with advancement in technology many cost-effective and ecofriendly techniques are made to synthesize gold nanoparticles. Gold nanoparticles have a vast scope in chemical, biomedicine, food, electronic and forensic industries. AuNPs are widely utilized as sensors, also as carriers in Drug delivery, Photothermal therapy, Heavy metal ion detection etc. This review describes various synthesis techniques, applications, and characterizations of AuNPs.

ABSTRACT

Nanoparticles have unique traits which make them useful for different purposes. Numerous methods are used to manufacturer nanoparticles at commercial scale. Gold nanoparticles (AuNPs) are one of the most utilized and preferred nanoparticles due to their traits like low resistivity, less toxicity, optical properties, high stability, fluorescence quenching ability, and “surface plasmon resonance”. Gold nanoparticles were utilized in ancient Roman Times for staining glasses and till now their new applications are being discovered every day. Various methodologies are utilized for Gold nanoparticle synthesis including conventional chemical methods, UV rays, polymers, ultrasound, plant and microbe-mediated techniques, etc. Conventional techniques are not eco-friendly or cost-effective. Nowadays plants and microbes being cost-effective and eco-friendly are preferred for gold nanoparticle synthesis. Various extracellular, intracellular, and biomolecular techniques are being utilized to manufacture gold nanoparticles. Gold nanoparticles have a vast scope in chemical, biomedicine, food, electronic and forensic industries. AuNPs are widely utilized as sensors, also as carriers in Drug delivery, Photothermal therapy, Heavy metal ion detection etc. This review describes various synthesis techniques, applications, and characterizations of AuNPs.
properties, synthesis by different eco-friendly techniques, recent advancements and applications of AuNPs in different fields is given.

SYNTHESIS OF AuNPS
For the production of AuNPs, two basic processes are generally followed namely “Top Down” and “Bottom up”. The Top-Down technique generally comprises of production of AuNPs from bulk and cracking them into nanoparticles by using different techniques. For example, ion sputtering, UV and IR irradiation, laser ablation and aerosol technology. While, in the Bottom-Up method production of Nanoparticles is started from atomic level like reduction of (Au3+) gold ions into (Au0) gold atoms [8–10]. The two basic stages are involved in the synthesis of gold nanoparticles in the first stage, an aq. gold salt solution generally known as gold precursor is reduced to gold nanoparticle by using specific reducing agent. In the second step, specific capping agent is used for the stabilization of gold nanoparticle. It hinders the accumulation of gold nanoparticles [11].

METHODOLOGIES INVOLVED IN THE PRODUCTION OF AuNPs
Conventional Method for synthesis of AuNPs
Also called Turkevich method was first presented by Turkevich in 1951. This technique is very helpful for the creation of spherical AuNPs. This technique contains the reduction of (Au3+) gold ions into (Au0) gold atoms by using reduction phenomenon of amino acids, UV, aq. citrate solution etc. the AuNPs produced by this method commonly has size range of about 1–2 nm [12–14].

Unconventional Synthesis of AuNPs
Unconventional synthesis of gold nanoparticles is done by using chemicals, it applies on large volume and also provides reproducible results. But there are some drawbacks as well for this. The major one is that toxicity of solvents, contamination from certain chemicals and hazardous particles as residues [15, 16]. In order to ensure purity and hygienic environment, biological-based production is becoming common in this era. Numerous biological sources are present in nature from which production of gold nanoparticles can be done which includes, bacteria, virus, fungi and some plant-based derivatives [17–19].

Microbial Facilitated synthesis of AuNPs
Recent studies focus on producing nanoparticles which are cost effective and environment friendly. Because of significant properties and wide range of applications various experiments have been done to produce nanoparticles also from microorganisms [20]. In the last three decades, it is suggested that various type of bacteria, fungi and yeast contain the ability to produce various type of metallic nanoparticles. Out of which, Molds are characterized as extremely good in the synthesis of these Nano materials [12, 21]. The synthesis of nanoparticles from microbes may be intra-cellular or may be extra-cellular [22]. In intracellular mechanism, passage of ions into cell wall which is negatively charged takes place and then metals which are positively charged get diffused by electrostatic attraction into the cell wall. Then, microbes from the cell wall changes toxic metals into nontoxic nanoparticles [23]. While in extracellular mechanism, contains the enzyme-mediated production like the use of hydroquinone or nitrate reductase which converts toxic metals into nontoxic nanoparticles [24].

Extracellular Synthesis of AuNPs
Production of gold nanoparticles is done by using the mechanism of reducing chloroauric ions, by using α-NADPH-dependent sulphite reductase and phytochelatin. Research shows that the supernatants of Enterobacteriaceae culture are nitro reductase (enzyme) enriched and are highly involved in the creation of gold nanoparticles [25, 26]. Studies revealed that Fusarium oxysporum can produce nanoparticles both extra and intracellularly [19]. When an overview of micro-organisms mediated synthesis methodologies was taken out, it was declared that synthesis of gold nanoparticles by using fungi is the best method as fungal strains are involved in production of various extracellular enzymes in huge quantity [27].

Intracellular Synthesis of AuNPs
Several microorganisms have been utilized for the intracellular production of metallic as well as inorganic nanoparticles of various morphologies and compositions with controlled physiochemical parameters such as temperature and pH [28]. AuNP synthesis was first reported in Bacillus subtilis 168 which showed the presence of octahedral AuNPs of 5–25nm in the cell wall [29]. Fusarium oxysporum fungus was discovered to produce 8–14 nm Au–Ag nano-alloy intracellularly and this production was regulated by the fungus’s NADH-dependent protein [30, 31]. When the algal species “Tetraselmis kochinensis” is subjected to aqueous AuCl4- ions, it manufactures intracellular AuNPs. The algae reduce AuCl4- ions, resulting in the formation of AuNPs that are more concentrated on the cell wall than on the cytoplasmic membrane, it is a helpful phenomenon because it makes nanoparticles more accessible and supports in various electronic, coating, drug delivery, and catalysis applications [32].
Plant Facilitated Synthesis of AuNPs

Comparing with microbial synthesis of inorganic particles, plant mediated synthesis is said be more efficient as it does not take longer time in process of cell cultures and produce nano-particles in industry in massive amount [10]. Secondary metabolites that are polyphenol based are revalued from plants because they are capable in efficiently reducing metallic precursor. Hydroxyl groups present in poly-phenols were seen to be helpful in process of reducing gold ions. Here oxidation reaction is boost up, and quinines are formed [43]. Leave extracts of Diopyros kaki and Magnolia Kobus are utilized for extracellular synthesis of AuNPs in an eco-friendly way [22, 44]. AuNPs are then further stabilized by maintaining electrostatic interaction which can limit their additional growth [45]. When gold nanoparticles are synthesized by plants there are certain factors that affect its evolution, including pH, temperature and concentration of biomass that is reductive already [12]. For instance, variation in plant growth, species, and geographic location play significant role in the bio-reduction of Au salts to AuNPs [46]. The concentration, physical characteristics, and type of plant material utilized all affect the versatility and stability of AuNPs. For example, Jimenez Perez and Mathiyalagan have demonstrated the clear influence of temperature, time, and ginseng plant extract concentration in the synthesis of AuNPs which correspond to distinct surface plasmon resonance (SPR) bands [47]. Terpenoids also have a significant role in bio-reduction of metal NPs by plant extracts [48].

Intracellular Synthesis of AuNPs

Gardea-Torresdey states that silver and gold nanoparticles can be formed inside plants by latest advanced synthesizing methods [49]. In experiment ALFALFA plants were grown in environment enriched in HAuCl₄, and the results revealed that the above-mentioned have ability which is in situ, and can produce numerous nanoparticles inside the vegetal cells [50]. When cultures of Brassica juncea were grown under specific conditions under gold mine soil due to reduction ability of reducing gold nanoparticles it reduce nanoparticles that are embedded in vegetal tissues [51]. Use of alkalotolerant actinomycete for intracellular synthesis of AuNPs is simple and ecofriendly method. Electron microscope revealed that gold particles were formed on cytoplasmic membrane as well as on cell wall [52].

Bark Facilitated Synthesis of AuNPs

Plant extracted solution phase production containing reduction of Au⁺ into Au₀ has gained significant importance as plant extracts are biocompatible, little reactive, renewable and possess ecofriendly aqueous medium [53]. In recent studies the significant biosynthesis of gold nanoparticles is done by using bark extract of Cassia fistula, the formed nanoparticle has significant role in treatment of hyperglycemia [54]. Because this plant has a high antioxidant content, the bark extract of Dalbergia sissoo Roxb a traditional Indian plant was equally effective in reducing gold ions. The resulting Nano products has role against disease causing reactive oxygen species [55]. The bark extract of plant Terminalia arjuna, an important cardiac tonic containing different plant secondary metabolites used for biosynthesis of nanoparticles mainly at room temperature [56].

Fruit Facilitated Production of AuNPs

Fruits are thought to be major source of polyphenols. Dietary polyphenols have important role in human health in preventing diabetes, cancer, and neurodegenerative diseases. The extracellular production of AuNPs is done by the reaction of Au ions and citrus fruits at boiling temperature [57, 58]. Investigations show the effective usage of Emblica officinalis extract which reduce chloroauric ions thus, causing production of morphologically stable uniformly dimensioned nanoparticles with average size of 25nm [59]. Studies shows the rapid synthesis of AuNPs occurs by using pear fruit extract and nanoparticles with different shapes

<table>
<thead>
<tr>
<th>Biological source</th>
<th>Morphology of Nanoparticles</th>
<th>Size [nm]</th>
<th>Biosynthesis Location</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhodopseudomonas capsulata</td>
<td>Spherical</td>
<td>10–20</td>
<td>Extracellular</td>
<td>[33]</td>
</tr>
<tr>
<td>Hibiscus rosa-sinensis</td>
<td>Spherical</td>
<td>16–30</td>
<td>Extracellular</td>
<td>[34]</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>Spherical</td>
<td>5–30</td>
<td>Extracellular</td>
<td>[35]</td>
</tr>
<tr>
<td>Bacillus licheniformis</td>
<td>Cubic</td>
<td>10–100</td>
<td>Intracellular</td>
<td>[36]</td>
</tr>
<tr>
<td>Fusarium oxysporum</td>
<td>Spherical and Triangular</td>
<td>8–40</td>
<td>Intracellular</td>
<td>[37]</td>
</tr>
<tr>
<td>Cassia auriculata</td>
<td>Triangular, hexagonal</td>
<td>15–25</td>
<td>Extracellular</td>
<td>[38]</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>Triangular</td>
<td>25–33</td>
<td>Intracellular</td>
<td>[39]</td>
</tr>
<tr>
<td>Ananas comosus</td>
<td>Spherical</td>
<td>10–11</td>
<td>Extracellular</td>
<td>[40]</td>
</tr>
<tr>
<td>Rhizopus oryzae</td>
<td>Different shapes (rod, triangle, hexagon)</td>
<td>9–10</td>
<td>Intracellular</td>
<td>[41]</td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td>Spherical</td>
<td>10–11</td>
<td>Extracellular</td>
<td>[42]</td>
</tr>
</tbody>
</table>

Table 1: Illustrates Bio-inspired production of Gold Nanoparticles from various biological sources (AuNPs)
can be measured and this analysis determines the optical properties of AuNPs [77]. This analysis is done using “UV-vis Shimadzu spectrophotometer” [78, 79].

SEM (Scanning Electron Microscope) Analysis

For sample analysis in scanning electron microscope sample preparation was needed, that comprises preparation of thin films of copper grid with carbon coating. These films were made by putting a small amount of sample film while the left-over solution was cleaned by blotting paper. Then it was dried under mercury lamp for only five minutes [80, 81]. The SEM analysis is used to determine the dispersion and surface morphologies of nanoparticles including AuNPs[82, 83].

TEM (Transmission Electron Microscopy) Analysis

For TEM characterization sample preparation is done first, and for this first a drop of solution is placed on the surface of copper grid that is purely coated by carbon and is dried at room temperature. The remaining solution would be removed by blotting paper [84]. The sample forms a film on top of “carbon-coated copper grid” [85]. TEM analysis was performed using a “JOEL model 1200EX equipment”, with the voltage increasing up to 80 kV [84]. TEM is used to analyze the shapes, elemental composition and size, localization and polymer binding of nanoparticles [86].

XRD (X-Ray Diffraction) Analysis

X-ray diffraction phenomenon was used to confirm crystalline nature and purity of AuNPs [87]. In its sample preparation, a solution of reduced gold nanoparticles on a glass surface on the equipment named “Phillip PW 1830” with “Cu Kα” rays at voltage “40KV” and current “20mA” [81, 84].

APPLICATIONS OF GOLD NANOPARTICLES

Drug Delivery

Through covalent bonding, physical absorption or ionic bonding various drugs and antibiotics can easily conjoin to gold nanoparticles. These conjugates of drugs and AuNPs increases drug’s effectiveness and are quite effective in therapy and treatment of endo-cellular disease [88]. Functionalized AuNPs have been used for targeted drug delivery for treatment and diagnosis of various diseases including cancer [89]. With AuNPs these drugs reach target site without affecting other organs. Drugs or antibiotics could be attached to AuNPs and delivered to target cell either through “passive” or “active” targeting. In “active targeting” tumor-specific biomarkers (e.g. peptides, aptamers, monoclonal antibodies, etc.) conjugated to AuNPs, attack the target cell by binding to its receptors resulting in the consequent release of the drug after endocytosis. In “passive targeting” drug-conjugated nanoparticles accumulate at the tumor site due to enhanced permeation and retention effect and attack the tumor cell. Active targeting is preferred over passive targeting as it ensures a higher possibility of endocytosis.
The conjugation of AuNPs with chemotherapeutic drugs has resulted in enhanced drug delivery and reduced side effects. For example, the anti-tumor drug “Methotrexate (MTX) conjugated with AuNPs” exhibited greater cytotoxicity against various cancer cell lines compared to free methotrexate. MTX-AuNP conjugated showed enhanced toxicity against numerous cancer cells including the Lewis lung carcinoma cell line. Another drug Doxorubicin (DOX) showed higher cytotoxicity when conjugated with gold nanoparticles, also side effects of chemotherapy like cardiac toxicity or nausea were reduced [90-93]. DOX-AuNP shows increased toxicity against MCF-7/ADR cancer cell lines [94].

Heavy Metal Ion Detection
In dealing with applications like environmental biology, clinical toxicity and industrial waste water monitoring, a sensor system is required that will enable real-time and on-site monitoring of metal ions such as Hg2+, Cu2+, and Pb2+. Portable heavy metal ion sensors are prepared using AuNPs by conjugating different analyte molecules to nanoparticles and these sensors are then utilized for wastewater and soil treatment etc. [2, 95]. For instance, AuNPs are conjugated with thymine and comprise oligonucleotides that have been used for the detection of Hg2+ ions in water even in minute amounts. It is also confirmed that AuNPs when hybridized with graphene sheets enhance their electrochemical activity and are utilized for the detection of various heavy metals [96-98].

Colorimetric Sensors Using AuNPs
Use of gold nanoparticles (AuNPs) as colorimetric sensors is an important analytical technique that is being used to detect biomolecules like enzymes, peptides, nucleic acids and analytes etc. AuNPs are preferred for this analysis due to their distinctive optical properties that cause visible colour change due to AuNP aggregation. The aggregation is due to the change in distance among antiparticles, when it is lesser than average diameter of gold nanoparticles the colour shifts from red to blue [99, 100]. AuNP based colorimetric sensors are vastly used for testing food quality, heavy metal ion detection, pathogen detection in clinical toxicity and industrial waste water monitoring, and these sensors are then utilized for wastewater and soil treatment etc. [2, 95]. For instance, AuNPs are conjugated with thymine and comprise oligonucleotides that have been used for the detection of Hg2+ ions in water even in minute amounts. It is also confirmed that AuNPs when hybridized with graphene sheets enhance their electrochemical activity and are utilized for the detection of various heavy metals [96-98].

Photothermal Therapy
Photothermal therapy (PTT) is vastly utilized technique in cancer therapy with minimum invasiveness. PTT is also called as “optical hyperthermia” or “laser ablation”. When AuNPs with most absorption in near IR or visible region are exposed to laser beam, they absorb the photon’s energy from the laser beam, which is then converted to heat energy causing an increase in temperature of AuNPs[102]. Usually shell-shaped or rod-shaped AuNPs are utilized in PTT [93]. To minimize this sudden increase in temperature gold nanoparticles, emancipate heat to cancer cells in the body ultimately causing the death of these cancer cells without harming the healthy tissues and cells [103].

Conclusions
Gold nanoparticles (AuNPs) are essential in a wide range of applications because of their adaptable characteristics. Their importance is clear from drug delivery systems, where AuNPs maximize therapeutic efficacy and reduce adverse effects, to environmental monitoring via heavy metal ion detection. The extent of their influence is demonstrated by the development of effective colorimetric sensors and their critical role in Photothermal therapy for the treatment of cancer. Using eco-friendly synthesis techniques, such as microbial and plant-mediated processes, also aligns with sustainable business practices. As synthesis methods continue to progress and applications grow, AuNPs become increasingly important components of the multidisciplinary field of nanotechnology.

Authors Contribution
Conceptualization: MW, AJ
Writing-review and editing: AJ, SI, AA, MW, SU, MBS, HR
All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest
The authors declare no conflict of interest.

Source of Funding
The authors received no financial support for the research, authorship and/or publication of this article.

References
Eco-Friendly Synthesis Methods of Gold Nanoparticles

[27] Hollmann F and Schmid A. Electrochemical Regeneration of Oxidoreductases for Cell-free Biocatalytic Redox Reactions. Biocatalysis and

[48] Mashwani Z ur R, Khan MA, Khan T, Nadhman A. Applications of plant terpenoids in the synthesis of...

