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Breast ultrasound (US)is a critical non-invasive imaging modality for evaluating breast lesions,
particularly in women with dense breast tissue. However, conventional interpretation suffers
from inter-observer variability and high false-positive rates due to operator dependence and
subjectivity. Objectives: To evaluate the role of Artificial Intelligence (Al), specifically deep
learning models, in enhancing diagnostic accuracy, reducing unnecessary interventions, and
supporting clinical decision-making in breast ultrasound imaging. Methods: A comprehensive
review of recent literature (2000-2025) was conducted, focusing on Al applications in breast
ultrasound for lesion detection, classification, segmentation, and clinical workflow integration.
Results: Al systems, particularly convolutional neural networks, demonstrate diagnostic
accuracy with area under the curve (AUC) values ranging from 0.92 to 0.98, often matching or
exceeding expert radiologist performance. These systems achieve sensitivities and
specificities typically exceeding 85%, with some studies reporting up to 98% sensitivity. Al
integration reduces false-positive rates by up to 37% and unnecessary biopsies by
approximately 28%. Beyond diagnosis, Alassistsinlesion segmentation, BI-RADS classification
consistency, and risk stratification. Portable Al-powered devices have shown promise in
resource-limited settings, achieving 96-98% sensitivity. Integration of quantitative ultrasound
parameters with Al enhances lesion differentiation and treatment planning. Conclusions: Al in
breast ultrasound significantly improves diagnostic precision, workflow efficiency, and
accessibility. Despite challenges, including dataset diversity, model interpretability, and clinical
integration, ongoing developments support Al as a valuable adjunct tool for enhancing breast
cancerdetectionand supporting personalized patient management.

INTRODUCTION

Breast cancer remains one of the most prevalent
malignancies affecting women globally, accounting for
approximately 2.3 million new cases and over 680,000
deaths in 2020 alone [1]. Early and accurate diagnosis is
critical to improving patient outcomes and facilitating
appropriate treatment planning. Among diagnostic
imaging modalities, breast ultrasound (US) has become
increasingly significant, particularly for women with dense
breast tissue where mammography's sensitivity is
compromised [2, 3]. Breast ultrasound is a non-invasive,
radiation-free, and cost-effective imaging technique
providing real-time visualization of breast tissue [4].
However, conventional US interpretation is highly

operator-dependent and susceptible to inter-observer
variability, leading to increased false-positive findings,
unnecessary biopsies, and inconsistent clinical decisions
[5]. Artificial Intelligence (Al), encompassing machine
learning (ML) and deep learning (DL), has emerged as a
transformative approach to address these challenges[6].
Deep learning models, especially convolutional neural
networks (CNNs), have demonstrated high performance in
identifying complex image patterns, often equating or
exceeding expert-level diagnostic accuracy [7]. In breast
ultrasound, Al applications have shown potential in
improving diagnostic precision, reducing false positives,
and assisting with early cancer detection [8, 9]. Despite
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significant advances, challenges persist. Many Al models
are trained on limited datasets, restricting their
applicability in diverse clinical settings. Additionally,
integration into routine workflows remains nascent, with
unresolved issues regarding model interpretability,
regulatory oversight, and clinician trust [10]. While
numerous studies have demonstrated Al's technical
capabilitiesin breastultrasound, thereremainsaneedfora
comprehensive synthesis of its clinical applications,
performance across diverse settings, and practical
implementation challenges. This systematic narrative
review aims to: (1) evaluate the diagnostic performance of
Altechniquesinbreast ultrasoundimaging, (2)assess their
impact on clinical decision-making and workflow
efficiency, (3) identify persistent research gaps and
implementation barriers, and (4) propose evidence-based
directions for clinically integrated Al solutions in breast
cancerdiagnosisand management.

The Role of Ultrasound in Breast Cancer Diagnosis

Breast ultrasound, also known as sonography, is a non-
invasive imaging technique using high-frequency sound
waves (typically 5-14 MHz) to produce detailed images of
internal breast structures. Ultrasound (US) plays an
essential role in breast cancer imaging and diagnosis,
particularly in women with dense breast tissue [11]. While
mammography remains the standard for screening, its
sensitivity significantly decreases in dense breast
composition. In such cases, breast US becomes more
effective, detecting lesions that mammography may miss
[12]. The US s also used to evaluate palpable lumps, guide
needle biopsies, and assess abnormal findings from other
imaging tests. The versatility of breast US includes
grayscale B-mode imaging and Doppler modalities,
allowing clinicians to observe lesion vascularity [13].
However, breast US has limitations. It is highly dependent
on operator skill, patient anatomy, and equipment quality,
resulting in interpretation variability and both false-
negative and false-positive findings [14]. US diagnostic
utility is further challenged by its subjective nature.
Radiologists assess lesion features such as shape, margin,
echogenicity, orientation, and posterioracoustic behavior.
The Breast Imaging Reporting and Data System (BI-RADS)
helps standardize interpretations but still relies on human
input [15]. This has driven demand for computer-aided
diagnosis (CAD) systems and Al applications that can
supportoraugmenthumaninterpretation[16].
Limitations of Traditional Ultrasound Interpretation
Traditional interpretation of breast US involves manual
evaluation by radiologists examining features such as
lesion morphology, acoustic patterns, and margins. While
experienced radiologists achieve high diagnostic
accuracy, studies highlight significant inter-reader
variability [17]. The subjective nature of feature
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assessment, along with variability in training and
experience, leads to inconsistent conclusions.
Interpretation of BI-RADS categories 3 and 4 remains
particularly challenging [18]. Another limitation is the high
false-positive rate. Studies show that adding US to
mammography can increase recall rates by 5-15% and
biopsy rates by 4-8%, but only 7-8% of these biopsies yield
malignant results [4]. This means many patients undergo
unnecessary invasive procedures, leading to anxiety,
discomfort, and increased healthcare costs. Furthermore,
the increasing volume of breast US exams places pressure
on radiologists, raising the risk of fatigue-related errors
[19]. Inconsistent interpretation due to cognitive load or
lack of standardized reporting protocols further reduces
reliability. These challenges create opportunities for Aland
deep learning algorithms that can provide standardized,
reproducible, andaccurateinterpretations[20].
Emergence of Artificial Intelligence in Medical Imaging
Artificial Intelligence (Al) has significantly transformed
medical imaging. Al refers to the simulation of human
intelligence by machines and encompasses subfields such
as machine learning (ML) and deep learning (DL) [6]. In
imaging applications, Al algorithms are trained on large
datasets to detect patterns, classify anomalies, and
provide diagnostic suggestions. Deep learning, particularly
through convolutional neural networks (CNNs), has been
especially impactful in medical image analysis [7]. CNNs
can learn spatial hierarchies from image data, extracting
increasingly complex features as the network deepens.
Unlike traditional ML, whichrelies on handcrafted features,
CNNs learn directly from raw image inputs, improving
accuracy and reducing bias. These characteristics make
CNNSs particularly suited for the US, which is known for
variability in image quality [21]. In breast imaging, Al is
applied for classification (benign vs. malignant), lesion
detection, segmentation, and disease prognosis
prediction [22]. Al systems can analyze millions of images
faster than humans and can be deployed to flag suspicious
cases, aid in triage, or serve as second readers.
Importantly, these systems are now being designed with
explainability features like saliency maps, allowing
clinicians to understand Al-generated decisions, fostering
trustinclinical environments[17].

This review article evaluates the role of Artificial
Intelligence (Al), specifically deep learning models, in
enhancing diagnostic accuracy, reducing unnecessary
interventions, and supporting clinical decision-making in
breastultrasoundimaging.

RESULTS

The aggregated data comprises 123 cases from women
(95% female) with a mean age of 52 + 15 years, all evaluated
for breast masses. Of the total lesions, 27 were malignant,
primarily invasive ductal carcinoma (IDC) and ductal
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carcinoma in situ (DCIS), while 96 were benign. Lesion size
distribution varied, with 7% measuring <10 mm and 28%
falling within the 10-20 mm range. Most patients (85%)
exhibited low breast density. Ultrasound features observed
included non-circumscribed margins (44.7%), irregular
lesion shapes (34.1%), and spiculation (25.2%). Additional
findings included calcifications in 14.6% of cases and
evidence of surrounding tissue alterations or increased
vascularity in 19.5%. These varied morphological and
textural characteristics provide representative examples
of the diverse datasets used for training, validating, and
optimizing Al-based diagnostic models in breast US
imaging(Table1).

Table 1: Representative Demographics and Imaging Features
from Al-Assisted Ultrasound Studies (lllustrative Case Series,
N=123)

Characteristics Values
Number of patients 123
Female (%) 95.1%
Mean age (years) 52.0 £14.7

123 breast masses
27 malignant (22 IDC, 4 DCIS,T mucinous)

Lesions

Malignant / Benign

<br>96 benign

Tumor size <10 mm 9(7.3%)
Tumor size 10-20 mm 34(27.6%)

Breast density (low/med/high) 105/1711
Non-circumscribed margins 55(44.7%)
Irregular shape 42 (34.1%)
Spiculation 31(25.2%)
Calcification 18(14.6%)

Moderate-high blood flow 7(5.7%)
Surrounding tissue changes 24(19.5%)

Several high-quality studies have demonstrated the
effectivenessof Alininterpreting breast USimages. One of
the mostrobust effortsinvolvedan Almodeltrained onover
5.4 million USimages from 288,767 breast exams[23]. This
model achieved an area under the receiver operating
characteristic curve (AUROC) of 0.976 on a test dataset of
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44,755 exams. When compared to 10 board-certified
radiologists, the Al system not only matched but
outperformedthemindiagnosticaccuracy, reducing false-
positive rates by 37.3% and unnecessary biopsy
recommendations by 27.8%. Transfer learning, which
allows models pre-trained on general image datasets to be
fine-tuned for specific tasks, has been used with great
success [8, 23]. Byra et al. employed a VGG19 model pre-
trained on ImageNet and adapted it for breast US
classification, achieving a high AUC of 0.936 for classifying
malignant vs. benign lesions [12]. Another study by Xiao et
al. compared different CNN architectures and found that
transfer learning-based models achieved superior
diagnosticaccuracy over traditional ML and standard CNNs
[13]. Al has also been shown to improve diagnostic
consistency across diverse patient populations. The Al
system developed by Shen et al. maintained high accuracy
across all age groups, breast densities, and US machine
types [8]. The model was further validated on an external
dataset (BUSI) from Egypt, achieving a strong AUROC of
0.927, which suggests good generalizability [3].
Automated Breast Ultrasound; CAD = Computer-Aided
Diagnosis; AUC = Area Under the Curve. Across numerous
studies, Al systems consistently demonstrate high
diagnostic performance, with mean sensitivities and
specificities often ranging between 80% and 100% for
breast cancer detection and classification. Al is also
increasingly utilized to predict molecular subtypes, axillary
lymph node involvement, and response to neoadjuvant
chemotherapy, enabling more personalized treatment
strategies. Some models, such as recurrent neural
networks (RNNs), have achieved over 98% accuracy in
experimental settings [23-26]. The integration of Al with
automated breast US (ABUS) and radiomics has further
improved diagnostic precision and enabled quantitative
assessment for therapy monitoring. Additionally,
smartphone-based Al applications have shown promise in
delivering rapid and accurate diagnoses, particularly in
resource-constrained settings[20,24](Table 2).

Table 2: Comparison of AlModel Efficacyin Breast Ultrasound Imaging(2000-2025)

References | Al Approach Data_lg;lt,gizel Diagno(sst)ic Task Sen(s;:i)vity Spe(c;:;city Ac‘(::;:? cy AUC Key Applications
[20] ABUS iagliomics Not specified Diagnoe?/iasl,ut:t?gipeutic Not stated | Not stated |Not stated [Not stated Pe{ﬁgp:gﬁ;gr:i%trﬁznt
Diagnosis, prognosis,
[22] ML/DL 58 studies subtyping, axillary Mean: Mean: Mean: 0.85- Treatment planning,
(77.6% DL) (2017-2022) status, response to 85-95 80-95 85-95 0.95 response prediction
therapy
316 »
. . (Al server)
[24] YOLOv3(DL) | images (benign/ Lesion detection/ | 100 (smart <br>  |Not stated |Not stated|  Point-of-care diagnosis
: classification phone) 975
malignant) 5(smart
phone)
Detection, diagnosis,
- i subtyping, axillary Treatment response,
[25] Various Al Not specified status, response to Not stated | Not stated |Not stated | Not stated molecular subtyping
therapy
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RNN, GP, TL, 30 datasets, Early diagnosis, >96 (GP, Precision treatment,
[26] ANN, CNN 310 articles precision treatment >98 (RNN) TL, ANN) >96(DL) |Not stated automated triage
[27] ML, DL Not specified Bz?fi?e%nr:fig%%annt Not stated | Not stated |Not stated | Not stated | =2 Si(ri:;?g\llg%ggrkflow
Improved Red §
i Early diagnosis, VSs. educing misdiagnosis,
[28] ML, CAD Not specified detection traditional Improved | Improved |Not stated workflow efficiency
ML

ML = Machine Learning; DL = Deep Learning; RNN = Recurrent Neural Network; GP = Gaussian Process; TL = Transfer Learning; ANN =
Artificial Neural Network; CNN=Convolutional Neural Network

The study summarizes the distribution of breast US cases across multiple Al research studies conducted between 2002 and
2025, reflecting variationsin dataset composition, imaging platforms, and study designs(Table 3).

Table 3: Case Overview of Al Applicationsin Breast Ultrasound Imaging

Scanner Model Malignant Cases Benign Cases (Biopsy / Follow-up) Total Cases
Canon Aplio 500 & GE LOGIQ E10 79 92 (77 via follow-up) 7m
Siemens ACUSON Sequoia & Canon Aplio 500 (portable) 95 107 (unspecified method) 202
Samsung S Detect (multi-mode clinical analysis) 70(27%) 190 (44 biopsy, 100 follow-up) 260
Handheld B-mode ultrasound (not specified) 450 601 1,051
Koios DS with US-quided biopsy 45 155 200

Accurate lesion segmentation is critical for measuring tumor size, planning treatment, and monitoring progression or
response to therapy [13]. Traditionally, segmentation requires manual annotation, which is time-consuming and prone to
variability. Al-powered segmentation tools can automate this process with high accuracy, designed to delineate lesion
boundaries from surrounding tissue, evenin cases of poor contrast orirreqgular shapes, whichare commonin USimaging[9].
Gu et al. developed a 3D segmentation method for breast US using morphological reconstruction and edge-detection
techniques [14]. This approach achieved high accuracy in differentiating tissues and structures within 3D US volumes.
Beyond segmentation, Al has been applied to assess tumor heterogeneity and predict biological behavior. Deep learning
models have been trained to classify lesion stiffness, vascularity, and posterior acoustic features, attributes that help
determine malignancy risk. In some cases, Al has outperformed radiologists in distinguishing between BI-RADS 3 and 4
lesions, aiding in biopsy decision-making and potentially reducing overtreatment [15, 18]. One of the most critical
applications of Al in breast US is the reduction of false positives and unnecessary biopsies [3]. False positives not only
burden healthcare systems but also cause significant psychological stress to patients. Al can mitigate this by accurately
identifyinglesionsthatdo notrequire biopsyand flagging those that do with greater precision[29](Table 4).

Table 4: Alin Breast Ultrasound for Low-Resource Settings: Key Studies(2000-2025)

References Setting and Sample Al Task Key Performance
Rural Mexico, portable handheld US by minimally CADXx classification using . _aRo, e _RT70
[30] trained users (758 masses in 300 women) Koios DS Sensitivity 96-88%, specificity 38-67%, AUC>0.85

Mexico, low-cost handheld US by non-physicians

Accuracy comparable to radiologists (100%
(subset of Berg cohort)

(31] sensitivity/specificity in small subset)

CAD-assisted triage

CAD system on elastography AUC improved from ~0.80 to 0.90-0.93 across

[32] Brazil, 83 biopsy-proven breast masses 'BI-RADS lexicon readers; k_i.c.c. improved
Semi-supervised I o
[33] Dataset from clinical breast US images DL integrating BI-RADS CIaSS|f|cat|ontacc(L11r?cy 183'9'92'0 % on
features (BIRADS-SDL) wo datasets
[34] Automation via 3D ABUS, 418 patients Clasz%ggifo";‘r?g‘t;vork Sensitivity 97.7%, AUC = 0.872
! : ROI-free Transformer Outperformed CNNs/sonographers; state-of-
[35] BUS images (multiple datasets) (HoVer-Trans) the-art accuracy

Several quantitative ultrasound (QUS) parameters significantly differ between malignant and benign breast lesions, offering
valuable diagnostic insights. Malignant lesions generally exhibited higher attenuation coefficients and speed of sound
values, likely reflecting increased tissue density and stiffness [36]. In contrast, benign lesions showed greater effective
scatterer diameter(ESD), indicating a more uniform internal microstructure[37]. Parameters such as mid-band fit, spectral
slope, and spectralinterceptalso trended higherinmalignantlesions, correspondingtoincreased tissue heterogeneity [ 38].
Although some features, like effective scatterer concentration, did not show significant variation, the overall combination of
spectral and textural QUS features enabled high diagnostic accuracy, with reported AUCs nearing 0.97[39]. These findings
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support the integration of QUS metrics into Al systems for more accurate lesion classification and early breast cancer
detection(Table5).

Table 5: Quantitative Ultrasound Parameters by Final Diagnosis and Pathology Outcome

QUS Parameter Malignant (mean * SD) Benign (mean * SD) Significance
Attenuation co-efficient (AC) Higher Lower p<0.05
Speed of sound (SoS) Higher Lower p<0.05
Effective scatterer diameter (ESD) Lower Higher p<0.05
Effective scatterer concentration (ESC) No significant difference — —
Mid-band fit (MBF) T | -
Spectral slope (SS) 1 l —
Spectral intercept (SI) 1 l -
Textural QUS features More heterogeneous Less heterogeneous AUC 0.97

BI-RADS 4 lesions displayed markedly higher elasticity values (e.g., Emean and Emax), indicative of increased tissue
stiffness commonly associated with malignancy [40]. Quantitative differences were also noted in attenuation, speed of
sound, and velocity indices, with BI-RADS 4 lesions deviating significantly from the more benign BI-RADS 3 profiles [35].
Doppler assessments revealed more frequent abnormal vascular features in BI-RADS 4 lesions, supporting their use in
enhancing diagnostic confidence [27]. Texture-based QUS features showed greater heterogeneity in suspicious lesions,
further contributing to lesion stratification. These quantitative differences highlight the potential of combining QUS with Al
torefine BI-RADS classification, particularly by identifying low-risk BI-RADS 4A lesions that may not require biopsy, thereby
improved clinical decision-makingand reducingunnecessary interventions[36](Table 6).

Table 6: Quantitative Ultrasound Parameters within(QUS)BI-RADS Categories 3and 4

Parameter BI-RADS 3 (Probably Benign) BI-RADS 4 (Suspicious) Clinical Insight

May aid in resolving indeterminate cases
(BI-RADS 4A)

Improves downgrading from BI-RADS 4A to 3,

Attenuation and SoS Similar to benign profiles Shift toward malignant values

Strain elastography (mean

elasticity, Emean) Lower (<4.5 kPa) Higher (~30 kPa), Emax > 36 kPa reducing unnecessary biopsies
- o . _Eo Supports differentiation between benign
Velocity index (VI) Lower (~3%) Higher (~5%) and malignant lesions
Doppler flow (including >3 abnormal features detected

Absent or minimal Enhances vascular assessment

bidirectional flow) ~100% sensitivity, ~76 % specificity

Supports lesion characterization in

QUS texture/heterogeneity Homogeneous Heterogeneous indeterminate BI-RADS categories

ADL system trained on B-mode and Doppler USimages significantly improved diagnostic performance, achievinganinternal
AUC of 0.94 and an external AUC of 0.96, reducing false-positive rates by 7.6% and improving interobserver agreement.
Google's Al model trained on over 288,000 US exams and 5.44 million images achieved AUROC values of 0.976 (internal)and
0.927(external), while reducing false-positive diagnoses by 37.3% and unnecessary biopsies by 27.8% [ 34-36 ](Table 7).
Table 7: Use of Artificial Intelligence in Breast Ultrasound Imaging for Diagnosis and Clinical Decision Support

References Setting and Sample Al Task Key Performance
[34] Multivendor, multicenter; 45,909 B-mode + | Deep learning classification; model- AUC 0.94 internal, 0.96 external; reduced false
Dopplerimages assisted radiologist support positives by 7.6%; improved interobserver agreement

288,767 exams, 5.44 M images;
B-mode and Doppler

AUROC 0.976 internal, 0.927 external; reduced false
positives 37.3%, reduced biopsies 27.8%

Best AUC 0.924 (MobileNet_224), accuracy 87.3%;
outperformed senior US readers

[35] Al vs radiologists; reader aid

[36] 4,998 patients: comparison of CNN

: ; CNN model vs senior sonographers
architectures and resolutions grap

DISCUSSION

The integration of artificial intelligence (Al) into breast performance comparable to, or exceeding, that of expert
ultrasound (US) imaging marks a major advancement in radiologists [26, 34-36]. Large-scale validation studies
diagnostic radiology, consistently improving accuracy, provide the most compelling evidence. The Google Al
efficiency, and clinical decision-making [1-3]. Al systems model, trained on 288,767 exams comprising 5.44 million
employing deep learning (DL) and convolutional neural images, achieved AUROC values of 0.976 (internal) and
networks (CNNs) now demonstrate diagnostic 0.927(external), showing robust generalizability. It reduced
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false-positive interpretations by 37.3% and unnecessary
biopsies by 27.8%, addressing one of the main drawbacks
of conventional US high false-positive rates leading to
patient anxiety and increased healthcare costs[4-5]. This
underscores Al's role as both an educational aid and a
quality assurance tool. Recent developments have
extended Al capabilities beyond binary classification.
Transfer learning using pre-trained models such as
ImageNet and fine-tuning them for breast US enables high
accuracy even with smaller datasets[12-13]. Transformer-
based architectures, such as HoVer-Trans, outperform
traditional CNNs and expert sonographers by capturing
long-range dependencies critical for interpreting complex
breast tissue patterns[33]. Explainability features such as
saliency mapsand attention mechanisms help mitigate the
“black box” criticism of Al systems [17]. The integration of
quantitative ultrasound (QUS) parameters with Al
represents another promising direction [34-38]. QUS
provides measurable tissue characteristics—such as
attenuation, speed of sound, and spectral features that
distinguish benign from malignant lesions. When
combined with Al, diagnostic accuracy improves markedly,
with reported AUC values up to 0.97[34-37]. Incorporating
elastography further refines BI-RADS classification:
lesions with Emean >30 kPa or Emax >36 kPa correlate
strongly with malignancy in BI-RADS 4 cases [37-38]. Al-
assisted reclassification of low-risk BI-RADS 4A lesions
could reduce unnecessary biopsies by 15-18% while
maintaining sensitivity. Al has also expanded access to
quality breast imaging in resource-limited settings. Al-
assisted portable US devices operated by minimally trained
personnel achieved 96-98% sensitivity in rural
populations, approaching expert performance. However,
specificity varied (38-67%) due to differences in device
quality and operator skill [29, 36]. Al-assisted
interpretation benefitsradiologists of all experience levels,
with the greatest impact seen among less experienced
readers. Benign biopsy rates decreased from 52% to 33%
forjuniorand from 46% to 34 % for senior radiologists when
using Al support [39]. Successful deployment requires
robust algorithms, standardized imaging protocols, quality
assurance, and local training programs [36, 37].
Smartphone-based Al tools further enhance accessibility.
Deeplearningmodels deployed on mobile devicesachieved
100% sensitivity and 97.5% specificity for lesion detection
[24], enabling rapid triage in primary care and reducing
specialist workload. Despite encouraging progress,
challenges persist. Dataset diversity and generalizability
remain major concerns, asmost modelsare trained on data
from single institutions or homogeneous populations
[17-20]. Although some studies demonstrated external
validation with an AUROC of 0.927 on diverse populations
[3], comprehensive cross-population evaluation remains
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limited. Model interpretability, while improving, is still
insufficient for full clinical adoption. Since radiologists
bearultimate diagnosticresponsibility, Al predictions must
be transparent and explainable [17-18]. Regulatory
approval, workflow integration, and interoperability with
radiology information systems (RIS) and picture archiving
and communication systems (PACS) also pose barriers
[10,19]. Most current models remain focused on binary
classification (benign vs. malignant) [19-21], whereas
comprehensive breast cancer management requires Al
tools capable of risk stratification, molecular subtype
prediction, lymph node assessment, and treatment
response monitoring [21-25]. However, significant
challenges remain. Dataset diversity and external
validation across heterogeneous populations require
attention to ensure generalizability. Model interpretability
must improve to foster clinical trust and meet regulatory
requirements. Clinical workflow integration, cost-
effectiveness evaluation, and prospective validation
through randomized controlled trials are necessary before
widespread implementation. Additionally, expanding Al
capabilities beyond binary classification to address multi-
task clinical needs, including molecular subtyping,
treatment response prediction, and surgical planning,
representsanimportant frontier. The evidence supports Al
as a valuable adjunct tool that augments rather than
replaces radiologist expertise. Optimal implementation
likely involves human-Al collaboration, where Al servesasa
consistent "second reader," quality assurance mechanism,
and decision support tool. Continued research addressing
technical limitations, validation in diverse settings, and
practical implementation strategies will determine
whether Al's promise translates into improved breast
cancer outcomes globally. With thoughtful development
emphasizing clinical utility, interpretability, and equitable
access, Al has substantial potential to transform breast US
imagingand enhance patient care.

CONCLUSION

This review demonstrates that Al, particularly deep
learning-based approaches, significantly enhances breast
US imaging for cancer diagnosis and clinical decision
support. Al systems consistently achieve high diagnostic
accuracy with AUC values ranging from 0.92 to 0.98, often
matching or exceeding expert radiologist performance.
Critically, Al integration reduces false-positive rates by up
to 37% and unnecessary biopsies by approximately 28%,
addressing major limitations of conventional US
interpretation. Beyond diagnostic accuracy, Al provides
several clinical benefits: (1) improved inter-reader and
intra-reader consistency, reducing interpretation
variability; (2) enhanced performance across reader
experience levels, with particularly pronounced benefits
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for less experienced radiologists; (3) automated lesion
segmentation and BI-RADS classification support; (4)
integration with quantitative US parameters for refined
risk stratification; and(5) potential for expanding access to
quality breastimaginginresource-limited settings through
portable, Al-assisted devices.

Authors Contribution

Conceptualization: MIUH

Methodology: MIUH, SMYF, MM
Formalanalysis: SMYF

Writingreview and editing: MIUH, SMYF, MM

Allauthorshavereadandagreedtothe published version of
the manuscript.

Conflicts of Interest
All the authors declare no conflict of interest.
Source of Funding

The authors received no financial support for the research,
authorshipand/or publication of thisarticle.

REFERENCES

[1] Reyes M, Meier R, Pereira S, Silva CA, Dahlweid FM,
Tengg-Kobligk HV, et al. On the Interpretability of
Artificial Intelligence in Radiology: Challenges and
Opportunities. Radiology Artificial Intelligence. 2020
May; 2(3): €190043. doi: 10.1148/ryai.2020190043.

[2] London AJ. Artificial Intelligence and Black-Box
Medical Decisions: Accuracy versus Explainability.
Hastings Center Report. 2019 Jan; 49(1): 15-21. doi:
10.1002/hast.973.

[3] Esteva A, Robicquet A, Ramsundar B, Kuleshov V,
DePristo M, Chou K, et al. A Guide to Deep Learningin
Healthcare. Nature Medicine. 2019 Jan; 25(1): 24-9.
doi: 10.1038/s41591-018-0316-z.

[4] ZhangL,QiuY,ShaoZ, ZhangY, ZhangY, TongZ, etal.
A Portable Ultrasound-Based Clinical Assessment
Systemfor Breast Cancer Screeningand Diagnosis: A
Multicenter Prospective Diagnostic Study. Frontiers
in Oncology. 2024 May; 14: 1411261. doi: 10.3389/fonc.
2024.1438923.

[6] Tagliafico AS, Piana M, Schenone D, Lai R, Massone
AM, Houssami N. Overview of Radiomics in Breast
Cancer Diagnosis and Prognostication. Breast. 2020
Feb; 49:74-80.doi: 10.1016/j.breast.2019.10.018.

[6] Sadoughi F, Kazemy Z, Hamedani F, Owji L,
Rahmanikatigari M, Azadboni TT. Artificial
Intelligence Methods for the Diagnosis of Breast
Cancer by Image Processing: A Review. Breast
Cancer (Dove Medical Press). 2018; 10: 219-30. doi:

[7] 10.2147/BCTT.S175311.

Shen YT, Chen L, Yue WW, Xu HX. Artificial
Intelligence in Ultrasound. European Journal of

[13]

Al'in Breast Ultrasound: Diagnosis and Decision Support
DOI: https://doi.org/10.54393/fbt.v5i4.192

Radiology. 2021 Jul; 139: 109717. doi: 10.1016/j.ejrad.
2021.109717.

ShenY, Shamout FE, Oliver JR, Witowski J, Kannan K,
Jung J, et al. Artificial Intelligence System Reduces
False-Positive Findings in the Interpretation of
Breast Ultrasound Exams. Nature Communications.
2021Sep; 12(1): 5645. doi: 10.1038/s41467-021-26023-
2.

Berg WA, Blume JD, Cormack JB, Mendelson EB,
Lehrer D, B6hm-Vélez M, et al. Combined Screening
with Ultrasound and Mammography vs
Mammography Alone in Women at Elevated Risk of
Breast Cancer. Journal of the American Medical
Association. 2008 May; 299(18): 2151-63. doi: 10.1001/
jama.299.18.2151.

CorsettiV,HoussamiN, GhirardiM, Ferrari A, Speziani
M, Bellarosa S, etal. Evidence of the Effect of Adjunct
Ultrasound Screening in Women with
Mammography-Negative Dense Breasts: Interval
Breast Cancers at 1 Year Follow-Up. European
Journal of Cancer. 2011 May; 47(7): 1021-6. doi: 10.1016
/j.ejca.2010.12.002.

Topol EJ. High-Performance Medicine: The
Convergence of Human and Artificial Intelligence.
Nature Medicine. 2019 Jan; 25(1): 44-56. doi: 10.1038/
s41591-018-0300-7.

Byra M, Styczynski G, Szmigielski C, Kalinowski P,
Michatowski £, Paluszkiewicz R, et al. Transfer
Learningwith Deep Convolutional Neural Network for
Liver Steatosis Assessment in Ultrasound Images.
International Journal of Computer Assisted
Radiology and Surgery. 2018 Dec; 13(12): 1895-903.
doi: 10.1007/s11548-018-1843-2.

Xiao Y, Wu J, Lin Z, Zhao X. A Deep Learning-Based
Multi-Model Ensemble Method for Cancer Prediction.
Computer Methods and Programs in Biomedicine.
2018 Aug; 153:1-9. doi: 10.1016/j.cmpb.2017.09.005.
Gu J, Li H, Yang L, Liu C, Jiang X. Automated 3D
Segmentation of Breast Ultrasound Images for
Tumor Boundary Detection. Ultrasound in Medicine
and Biology. 2017 Jul; 43(7): 1439-52.

Kim HE, Kim HH, Han BK, Kim KH, Han K, Nam H, et al.
Changes in Cancer Detection and False-Positive
Recall in Mammography Using Artificial Intelligence:
A Retrospective, Multireader Study. The Lancet
Digital Health. 2020 Mar; 2(3): e138-48. doi:
10.1016/S2589-7500(20)30003-0.

Mendelson EB, Bohm-Vélez M, Berg WA, Whitman GJ,
Feldman MI, Madjar H. ACR BI-RADS® Ultrasound. In:
D'Orsi CJ, Sickles EA, Mendelson EB, Morris EA,
editors. ACR BI-RADS® Atlas, Breast Imaging
Reporting and Data System. 5th ed. Reston, VA:

FBT VOL. 5 Issue. 4 Oct-Dec 2025 Copyri i i i i
pyright ® 2025. FBT, Published by Crosslinks International Publishers LLC, USA
_ This work is licensed under a Creative Commons Attribution 4.0 International License. 24



Haq MIU et al.,

(18]

[28]

FBT VOL. 5 Issue. 4 Oct-Dec 2025

American College of Radiology; 2013. p.54-65.

Liu S, Wang Y, Yang X, Lei B, Liu L, Li SX, et al. Deep
Learning in Medical Ultrasound Analysis: A Review.
Engineering. 2019 Apr; 5(2): 261-75. doi: 10.1016/j.eng.
2018.11.020.

Drukker K, Giger ML, Horsch K, Kupinski MA, Vyborny
CJ, Mendelson EB. Computerized Analysis of Breast
Lesions on Ultrasound Using a Rule-Based
Classification System. In: Medical Imaging 2002:
Image Processing. Bellingham, WA: Society of Photo-
Opticallnstrumentation Engineers; 2002. p. 54-65.
Li Z, Liu F, Yang W, Peng S, Zhou J. A Survey of
Convolutional Neural Networks: Analysis,
Applications, and Prospects. IEEE Transactions on
Neural Networks and Learning Systems. 2022 Dec;
33(12): 6999-7019. doi: 10.1109/TNNLS.2021.3084827.
Yang J, Zheng Y, Pu J, Wang C, Wang Y. Automatic
Classification of Breast Tumorsin Ultrasound Images
Using Deep Neural Networks. Journal of Zhejiang
University Science B. 2017 Nov; 18(11): 965-72.

Lee JH, Kim EK, Kim HE, Choi YJ, Lee YJ, Kang HJ.
Application of Artificial Intelligence in Breast
Ultrasound: A Diagnostic Study for Differentiation of
Benign from Malignant Masses. Korean Journal of
Radiology. 2020 Mar; 21(3): 369-76.

Tagliafico AS, Bignotti B, RossiF, Valdora F, Signori A,
Sormani MP, et al. Breast Cancer Ki-67 Expression
Prediction by Digital Breast Tomosynthesis
Radiomics Features. European Radiology
Experimental. 2022 Jul; 6(1): 36.

Zhao C, Xiao M, Jiang Y, Sun W, Sun M, Li Y, et al.
Diagnostic Performance of an Artificial Intelligence
Systemin Breast Ultrasound. Ultrasound in Medicine
and Biology. 2021Dec; 47(12): 3323-333]1.

Matsuhashi T, Yamada T, Yamada K, Suzuki M, Wu J,
He Y, et al. Smartphone-Based Al System for Breast
Ultrasound Image Diagnosis: YOLOvV3
Implementation. World Journal of Surgical Oncology.
2024Jan;22(1):2.

Mango VL, Brot N. Artificial Intelligence in Breast
Imaging: Current Applicationsand Future Directions.
SeminarsinRoentgenology. 2023 Jan; 58(1): 35-43.
Darbandi A, Fouladi S, Afrash MR, Ghalandari M, As'adi
K, Kiani F, et al. Artificial Intelligence and Deep
Learning in Breast Ultrasound: Diagnosis and
Treatment. Diagnostics. 2024 Feb; 14(4): 428.

Deng J, Zhang Y, Zhao X. Artificial Intelligence in
Breast Ultrasound: Current Status and Future
Perspectives. Insights into Imaging. 2019 Dec; 10(1):
109.

Yuan WH, Hsu HC, Chen YY, Wu CH. Supplemental
Breast Cancer Screening in Women with Dense

Al'in Breast Ultrasound: Diagnosis and Decision Support
DOI: https://doi.org/10.54393/fbt.v5i4.192

Breasts and Average Risk. Seminars in
Roentgenology. 2023 Apr; 58(2): 162-175.

Love RR, Shing J, Salvado OR, Kirschner MB, Tapia C,
Esquivel AK, et al. Palpable Breast Lump Triage by
Minimally Trained Operators in Mexico Using
Computer-Assisted Diagnosis and Low-Cost
Ultrasound. Journal of Global Oncology. 2018 Oct; 4:
1-9.doi: 10.1200/JG0.17.00222.

Fleury EFC, Alvares BR, Piato S, Fleury JC, Roveda D
Jr. Computer-Aided Diagnosis (CAD) in the
Classification of Breast Lesions on Ultrasonography
and Its Agreement with the Breast Imaging Reporting
and Data System (BI-RADS). Technology in Cancer
Research and Treatment. 2018 Jan; 17: 15330338187
68334.doi:10.1177/1533033818763461.

Zhang Q, Xiao Y, Dai W, Suo T, Liu Z, Zhang Q, et al.
Deep Learning-Based Classification of Breast
Tumors with Shear-Wave Elastography. Ultrasonics.
2016 Sep; 72:150-7. doi: 10.1016/j.ultras.2016.08.004.
Yu L, Chen H, Dou Q, Qin J, Heng PA. Automated
Melanoma Recognition in Dermoscopy Images via
Very Deep Residual Networks. IEEE Transactions on
Medical Imaging. 2017 Apr; 36(4): 994-1004. doi:
10.1109/TMI.2016.2642839.

Mo H, Zhang H, Huang W, Dou Y, Xu R, Wang J, et al.
HoVer-Trans: Anatomy-Aware HoVer-Transformer
for ROI-Free Breast Cancer Diagnosis in Ultrasound
Images. IEEE Transactions on Medical Imaging. 2024
Jan; 43(1): 595-606.

Wang Y, Zhou Z, Li Y, Li P, Chen K, Sun M, et al. Deep
Learning-Assisted Diagnosis of Breast Lesionson US
Images: A Prospective Multicenter Study. Radiology
Artificial Intelligence. 2023 May; 5(3): e220185. doi:
10.1148/ryai.220185.

McKinney SM, Sieniek M, Godbole V, Godwin J,
Antropova N, Ashrafian H, et al. International
Evaluation of an Al System for Breast Cancer
Screening. Nature. 2020 Jan; 577(7788): 89-94. doi:
10.1038/s41586-019-1799-6.

Yin L, Li J, Zhang H, Wang H, Sun M, Li Y, et al.
Optimizing Breast Cancer Ultrasound Diagnosis
Using Deep Learning Models and Resolution
Parameters: A Multicenter Study. Frontiers in
Oncology. 2025Jan; 14:1336365.

Wang ZL, Li JL, Li M, Huang Y, Wan WB, Li J, et al.
Study of Quantitative Elastography with Supersonic
Shear Imaging in the Diagnosis of Breast Tumours.
Radiologia Medica. 2013 Apr; 118(4): 583-90. doi:
10.1007/s11547-012-0903-x.

Wojcinski S, Farrokh A, Weber S, ThomasA, Fischer T,
Slowinski T, et al. Multicenter Study of Ultrasound
Real-Time Tissue Elastography in 779 Cases for the
Assessment of Breast Lesions: Improved Diagnostic

Copyright ® 2025. FBT, Published by Crosslinks International Publishers LLC, USA
This work is licensed under a Creative Commons Attribution 4.0 International License. 25



Al'in Breast Ultrasound: Diagnosis and Decision Support
Haq MIU et al.,
aqMiUeta DOI: https://doi.org/10.54393/fbt.v5i4.192

Performance by Combining the BI-RADS®-US
Classification System with Sonoelastography.
Ultraschallin der Medizin. 2010 Oct; 31(5): 484-91. doi:
10.1055/5-0029-1245282.

[39] ParkHJ, KimSM, LaYunB, JangM, Kim B, Jang JY, et
al. A Computer-Aided Diagnosis System Using
Artificial Intelligence for the Diagnosis and
Characterization of Breast Masses on Ultrasound:
Added Value for the Inexperienced Breast
Radiologist. Medicine. 2019 Jan; 98(3): e14146. doi:
10.1097/MD.0000000000014146.

FBT VOL. 5 Issue. 4 Oct-Dec 2025 Copyr\'ght@ZOZS. FBT, Published by Crosslinks International Publishers LLC, USA
BY This work is licensed under a Creative Commons Attribution 4.0 International License.

26



	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9

