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Breast ultrasound (US) is a critical non-invasive imaging modality for evaluating breast lesions, 

particularly in women with dense breast tissue. However, conventional interpretation suffers 

from inter-observer variability and high false-positive rates due to operator dependence and 

subjectivity. Objectives: To evaluate the role of Arti�cial Intelligence (AI), speci�cally deep 

learning models, in enhancing diagnostic accuracy, reducing unnecessary interventions, and 

supporting clinical decision-making in breast ultrasound imaging. Methods: A comprehensive 

review of recent literature (2000-2025) was conducted, focusing on AI applications in breast 

ultrasound for lesion detection, classi�cation, segmentation, and clinical work�ow integration. 

Results: AI systems, particularly convolutional neural networks, demonstrate diagnostic 

accuracy with area under the curve (AUC) values ranging from 0.92 to 0.98, often matching or 

exceeding expert radiologist performance. These systems achieve sensitivities and 

speci�cities typically exceeding 85%, with some studies reporting up to 98% sensitivity. AI 

integration reduces false-positive rates by up to 37% and unnecessary biopsies by 

approximately 28%. Beyond diagnosis, AI assists in lesion segmentation, BI-RADS classi�cation 

consistency, and risk strati�cation. Portable AI-powered devices have shown promise in 

resource-limited settings, achieving 96-98% sensitivity. Integration of quantitative ultrasound 

parameters with AI enhances lesion differentiation and treatment planning. Conclusions: AI in 

breast ultrasound signi�cantly improves diagnostic precision, work�ow e�ciency, and 

accessibility. Despite challenges, including dataset diversity, model interpretability, and clinical 

integration, ongoing developments support AI as a valuable adjunct tool for enhancing breast 

cancer detection and supporting personalized patient management.
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operator-dependent and susceptible to inter-observer 
variability, leading to increased false-positive �ndings, 
unnecessary biopsies, and inconsistent clinical decisions 
[5]. Arti�cial Intelligence (AI), encompassing machine 
learning (ML) and deep learning (DL), has emerged as a 
transformative approach to address these challenges [6]. 
Deep learning models, especially convolutional neural 
networks (CNNs), have demonstrated high performance in 
identifying complex image patterns, often equating or 
exceeding expert-level diagnostic accuracy [7]. In breast 
ultrasound, AI applications have shown potential in 
improving diagnostic precision, reducing false positives, 
and assisting with early cancer detection [8, 9]. Despite 

I N T R O D U C T I O N

Breast cancer remains one of the most prevalent 
malignancies affecting women globally, accounting for 
approximately 2.3 million new cases and over 680,000 
deaths in 2020 alone [1]. Early and accurate diagnosis is 
critical to improving patient outcomes and facilitating 
appropriate treatment planning. Among diagnostic 
imaging modalities, breast ultrasound (US) has become 
increasingly signi�cant, particularly for women with dense 
breast tissue where mammography's sensitivity is 
compromised [2, 3]. Breast ultrasound is a non-invasive, 
radiation-free, and cost-effective imaging technique 
providing real-time visualization of breast tissue [4]. 
However, conventional US interpretation is highly 
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signi�cant advances, challenges persist. Many AI models 
are trained on limited datasets, restricting their 
applicability in diverse clinical settings. Additionally, 
integration into routine work�ows remains nascent, with 
unresolved issues regarding model interpretability, 
regulatory oversight, and clinician trust [10]. While 
numerous studies have demonstrated AI's technical 
capabilities in breast ultrasound, there remains a need for a 
comprehensive synthesis of its clinical applications, 
performance across diverse settings, and practical 
implementation challenges. This systematic narrative 
review aims to: (1) evaluate the diagnostic performance of 
AI techniques in breast ultrasound imaging, (2) assess their 
impact on clinical decision-making and work�ow 
e�ciency, (3) identify persistent research gaps and 
implementation barriers, and (4) propose evidence-based 
directions for clinically integrated AI solutions in breast 
cancer diagnosis and management.
The Role of Ultrasound in Breast Cancer Diagnosis
Breast ultrasound, also known as sonography, is a non-
invasive imaging technique using high-frequency sound 
waves (typically 5-14 MHz) to produce detailed images of 
internal breast structures. Ultrasound (US) plays an 
essential role in breast cancer imaging and diagnosis, 
particularly in women with dense breast tissue [11]. While 
mammography remains the standard for screening, its 
sensitivity signi�cantly decreases in dense breast 
composition. In such cases, breast US becomes more 
effective, detecting lesions that mammography may miss 
[12]. The US is also used to evaluate palpable lumps, guide 
needle biopsies, and assess abnormal �ndings from other 
imaging tests. The versatility of breast US includes 
grayscale B-mode imaging and Doppler modalities, 
allowing clinicians to observe lesion vascularity [13]. 
However, breast US has limitations. It is highly dependent 
on operator skill, patient anatomy, and equipment quality, 
resulting in interpretation variability and both false-
negative and false-positive �ndings [14]. US diagnostic 
utility is further challenged by its subjective nature. 
Radiologists assess lesion features such as shape, margin, 
echogenicity, orientation, and posterior acoustic behavior. 
The Breast Imaging Reporting and Data System (BI-RADS) 
helps standardize interpretations but still relies on human 
input [15]. This has driven demand for computer-aided 
diagnosis (CAD) systems and AI applications that can 
support or augment human interpretation [16].
Limitations of Traditional Ultrasound Interpretation
Traditional interpretation of breast US involves manual 
evaluation by radiologists examining features such as 
lesion morphology, acoustic patterns, and margins. While 
experienced radiologists achieve high diagnostic 
accuracy, studies highlight signi�cant inter-reader 
variability [17]. The subjective nature of feature 

assessment, along with variability in training and 
experience,  leads to  inconsistent  conclusions. 
Interpretation of BI-RADS categories 3 and 4 remains 
particularly challenging [18]. Another limitation is the high 
false-positive rate. Studies show that adding US to 
mammography can increase recall rates by 5-15% and 
biopsy rates by 4-8%, but only 7-8% of these biopsies yield 
malignant results [4]. This means many patients undergo 
unnecessary invasive procedures, leading to anxiety, 
discomfort, and increased healthcare costs. Furthermore, 
the increasing volume of breast US exams places pressure 
on radiologists, raising the risk of fatigue-related errors 
[19]. Inconsistent interpretation due to cognitive load or 
lack of standardized reporting protocols further reduces 
reliability. These challenges create opportunities for AI and 
deep learning algorithms that can provide standardized, 
reproducible, and accurate interpretations [20].
Emergence of Arti�cial Intelligence in Medical Imaging   
Arti�cial Intelligence (AI) has signi�cantly transformed 
medical imaging. AI refers to the simulation of human 
intelligence by machines and encompasses sub�elds such 
as machine learning (ML) and deep learning (DL) [6]. In 
imaging applications, AI algorithms are trained on large 
datasets to detect patterns, classify anomalies, and 
provide diagnostic suggestions. Deep learning, particularly 
through convolutional neural networks (CNNs), has been 
especially impactful in medical image analysis [7]. CNNs 
can learn spatial hierarchies from image data, extracting 
increasingly complex features as the network deepens. 
Unlike traditional ML, which relies on handcrafted features, 
CNNs learn directly from raw image inputs, improving 
accuracy and reducing bias. These characteristics make 
CNNs particularly suited for the US, which is known for 
variability in image quality [21]. In breast imaging, AI is 
applied for classi�cation (benign vs. malignant), lesion 
detection, segmentation, and disease prognosis 
prediction [22]. AI systems can analyze millions of images 
faster than humans and can be deployed to �ag suspicious 
cases, aid in triage, or serve as second readers. 
Importantly, these systems are now being designed with 
explainability features like saliency maps, allowing 
clinicians to understand AI-generated decisions, fostering 
trust in clinical environments [17].
This review article evaluates the role of Arti�cial 
Intelligence (AI), speci�cally deep learning models, in 
enhancing diagnostic accuracy, reducing unnecessary 
interventions, and supporting clinical decision-making in 
breast ultrasound imaging. 
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R E S U L T S

The aggregated data comprises 123 cases from women 
(95% female) with a mean age of 52 ± 15 years, all evaluated 
for breast masses. Of the total lesions, 27 were malignant, 
primarily invasive ductal carcinoma (IDC) and ductal 
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44,755 exams. When compared to 10 board-certi�ed 
radiologists, the AI system not only matched but 
outperformed them in diagnostic accuracy, reducing false-
positive rates by 37.3% and unnecessar y biopsy 
recommendations by 27.8%. Transfer learning, which 
allows models pre-trained on general image datasets to be 
�ne-tuned for speci�c tasks, has been used with great 
success [8, 23]. Byra et al. employed a VGG19 model pre-
trained on ImageNet and adapted it for breast US 
classi�cation, achieving a high AUC of 0.936 for classifying 
malignant vs. benign lesions [12]. Another study by Xiao et 
al. compared different CNN architectures and found that 
transfer learning-based models achieved superior 
diagnostic accuracy over traditional ML and standard CNNs 
[13]. AI has also been shown to improve diagnostic 
consistency across diverse patient populations. The AI 
system developed by Shen et al. maintained high accuracy 
across all age groups, breast densities, and US machine 
types [8]. The model was further validated on an external 
dataset (BUSI) from Egypt, achieving a strong AUROC of 
0.927, which suggests good generalizability [3]. 
Automated Breast Ultrasound; CAD = Computer-Aided 
Diagnosis; AUC = Area Under the Curve. Across numerous 
studies, AI systems consistently demonstrate high 
diagnostic performance, with mean sensitivities and 
speci�cities often ranging between 80% and 100% for 
breast cancer detection and classi�cation. AI is also 
increasingly utilized to predict molecular subtypes, axillary 
lymph node involvement, and response to neoadjuvant 
chemotherapy, enabling more personalized treatment 
strategies. Some models, such as recurrent neural 
networks (RNNs), have achieved over 98% accuracy in 
experimental settings [23-26]. The integration of AI with 
automated breast US (ABUS) and radiomics has further 
improved diagnostic precision and enabled quantitative 
assessment for therapy monitoring. Additionally, 
smartphone-based AI applications have shown promise in 
delivering rapid and accurate diagnoses, particularly in 
resource-constrained settings [20, 24] (Table 2). 

carcinoma in situ (DCIS), while 96 were benign. Lesion size 
distribution varied, with 7% measuring ≤10 mm and 28% 
falling within the 10-20 mm range. Most patients (85%) 
exhibited low breast density. Ultrasound features observed 
included non-circumscribed margins (44.7%), irregular 
lesion shapes (34.1%), and spiculation (25.2%). Additional 
�ndings included calci�cations in 14.6% of cases and 
evidence of surrounding tissue alterations or increased 
vascularity in 19.5%. These varied morphological and 
textural characteristics provide representative examples 
of the diverse datasets used for training, validating, and 
optimizing AI-based diagnostic models in breast US 
imaging (Table 1). 

Table 1: Representative Demographics and Imaging Features 

from AI-Assisted Ultrasound Studies (Illustrative Case Series, 

N=123)

Characteristics Values

Number of patients

Female (%)

Mean age (years)

Lesions

Malignant / Benign

123

95.1%

52.0 ± 14.7

123 breast masses

27 malignant (22 IDC, 4 DCIS,1 mucinous)
<br>96 benign

Tumor size ≤10 mm

Tumor size 10-20 mm

Breast density (low/med/high)

Non-circumscribed margins

Irregular shape

Spiculation

Calci�cation

Moderate-high blood �ow

Surrounding tissue changes

9 (7.3%)

34 (27.6%)

105/17/1

55 (44.7%)

42 (34.1%)

31 (25.2%)

18 (14.6%)

7 (5.7%)

24 (19.5%)

Several high-quality studies have demonstrated the 
effectiveness of AI in interpreting breast US images. One of 
the most robust efforts involved an AI model trained on over 
5.4 million US images from 288,767 breast exams [23]. This 
model achieved an area under the receiver operating 
characteristic curve (AUROC) of 0.976 on a test dataset of 

Table 2: Comparison of AI Model E�cacy in Breast Ultrasound Imaging (2000-2025)   

References
Accuracy

(%)
AUC Key ApplicationsAI Approach Dataset Size/

Type
Sensitivity

(%)
Speci�city

(%)

[20] Not stated Not stated
Personalized treatment,

therapy monitoring
ABUS radiomics

+ AI
Not speci�ed Diagnosis, therapeutic

evaluation
Not stated Not stated

Diagnostic Task
(s)

[22]
ML/DL

(77.6% DL)
58 studies

(2017-2022)

Diagnosis, prognosis,
subtyping, axillary

status, response to
therapy

Mean:
85-95

Mean:
80-95

Mean:
85-95

0.85-
0.95

Treatment planning,
response prediction

[24] YOLOv3 (DL)

316
images (benign/

malignant)

Lesion detection/
classi�cation

75
(AI server)

<br>
97.5 (smart

phone)

Not stated Not stated Point-of-care diagnosis
100 (smart

phone)

[25] Various AI Not speci�ed

Detection, diagnosis,
subtyping, axillary

status, response to
therapy

Not stated Not stated Not stated Not stated
Treatment response,
molecular subtyping
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The study summarizes the distribution of breast US cases across multiple AI research studies conducted between 2002 and 
2025, re�ecting variations in dataset composition, imaging platforms, and study designs (Table 3).  

Table 3: Case Overview of AI Applications in Breast Ultrasound Imaging

[26]
RNN, GP, TL,

ANN, CNN
30 datasets,
310 articles

Early diagnosis,
precision treatment >98 (RNN)

>96 (GP,
TL, ANN)

>96 (DL) Not stated
Precision treatment,

automated triage

[27] ML, DL Not speci�ed Benign/malignant
differentiation

Not stated Not stated Not stated Not stated
Early screening, work�ow

improvement

[28] ML, CAD Not speci�ed Early diagnosis,
detection

Improved
vs.

traditional
ML

Improved Improved Not stated
Reducing misdiagnosis,

work�ow e�ciency

 ML = Machine Learning; DL = Deep Learning; RNN = Recurrent Neural Network; GP = Gaussian Process; TL = Transfer Learning; ANN = 

Arti�cial Neural Network; CNN = Convolutional Neural Network

Malignant Cases Total CasesScanner Model Benign Cases (Biopsy / Follow-up)

Canon Aplio 500 & GE LOGIQ E10

Siemens ACUSON Sequoia & Canon Aplio 500 (portable)

Samsung S Detect (multi-mode clinical analysis)

Handheld B-mode ultrasound (not speci�ed)

Koios DS with US-guided biopsy

79

95

70 (27%)

450

45

92 (77 via follow-up)

107 (unspeci�ed method)

190 (44 biopsy, 100 follow-up)

601

155

171

202

260

1,051

200

Accurate lesion segmentation is critical for measuring tumor size, planning treatment, and monitoring progression or 
response to therapy [13]. Traditionally, segmentation requires manual annotation, which is time-consuming and prone to 
variability. AI-powered segmentation tools can automate this process with high accuracy, designed to delineate lesion 
boundaries from surrounding tissue, even in cases of poor contrast or irregular shapes, which are common in US imaging [9]. 
Gu et al. developed a 3D segmentation method for breast US using morphological reconstruction and edge-detection 
techniques [14]. This approach achieved high accuracy in differentiating tissues and structures within 3D US volumes.  
Beyond segmentation, AI has been applied to assess tumor heterogeneity and predict biological behavior. Deep learning 
models have been trained to classify lesion stiffness, vascularity, and posterior acoustic features, attributes that help 
determine malignancy risk. In some cases, AI has outperformed radiologists in distinguishing between BI-RADS 3 and 4 
lesions, aiding in biopsy decision-making and potentially reducing overtreatment [15, 18]. One of the most critical 
applications of AI in breast US is the reduction of false positives and unnecessary biopsies [3]. False positives not only 
burden healthcare systems but also cause signi�cant psychological stress to patients. AI can mitigate this by accurately 
identifying lesions that do not require biopsy and �agging those that do with greater precision [29] (Table 4). 

Table 4: AI in Breast Ultrasound for Low-Resource Settings: Key Studies (2000-2025)

References Setting and Sample AI Task Key Performance

 [30]
Rural Mexico, portable handheld US by minimally

trained users (758 masses in 300 women)
CADx classi�cation using

Koios DS
Sensitivity 96-98%, speci�city 38-67%, AUC ≥ 0.95

 [31]
Mexico, low-cost handheld US by non-physicians

(subset of Berg cohort)
CAD-assisted triage

Accuracy comparable to radiologists (100%
sensitivity/speci�city in small subset)

 [32] Brazil, 83 biopsy-proven breast masses CAD system on elastography
+BI-RADS lexicon

AUC improved from ~0.80 to 0.90-0.93 across
readers; κ_i.c.c. improved

 [33] Dataset from clinical breast US images
Semi-supervised

DL integrating BI-RADS
features (BIRADS-SDL)

Classi�cation accuracy ~83.9-92.0% on
two datasets

 [34] Automation via 3D ABUS, 418 patients 3D detection +
classi�cation network

Sensitivity 97.7%, AUC ≈ 0.872

 [35] BUS images (multiple datasets)
ROI-free Transformer

(HoVer-Trans)
Outperformed CNNs/sonographers; state-of-

the-art accuracy

 Several quantitative ultrasound (QUS) parameters signi�cantly differ between malignant and benign breast lesions, offering 
valuable diagnostic insights. Malignant lesions generally exhibited higher attenuation coe�cients and speed of sound 
values, likely re�ecting increased tissue density and stiffness [36]. In contrast, benign lesions showed greater effective 
scatterer diameter (ESD), indicating a more uniform internal microstructure [37]. Parameters such as mid-band �t, spectral 
slope, and spectral intercept also trended higher in malignant lesions, corresponding to increased tissue heterogeneity [38]. 
Although some features, like effective scatterer concentration, did not show signi�cant variation, the overall combination of 
spectral and textural QUS features enabled high diagnostic accuracy, with reported AUCs nearing 0.97 [39]. These �ndings 
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Table 5: Quantitative Ultrasound Parameters by Final Diagnosis and Pathology Outcome

support the integration of QUS metrics into AI systems for more accurate lesion classi�cation and early breast cancer 
detection (Table 5).

QUS Parameter Malignant (mean ± SD) Benign (mean ± SD) Signi�cance

Attenuation co-e�cient (AC)

Speed of sound (SoS)

Effective scatterer diameter (ESD)

Effective scatterer concentration (ESC)

Mid-band �t (MBF)

Spectral slope (SS)

Spectral intercept (SI)

Textural QUS features

Higher

Higher

Lower

No signi�cant difference

↑

↑

↑

More heterogeneous

Lower

Lower

Higher

—

↓

↓

↓

Less heterogeneous

p < 0.05

p < 0.05

p < 0.05

—

—

—

—

AUC 0.97

BI-RADS 4 lesions displayed markedly higher elasticity values (e.g., Emean and Emax), indicative of increased tissue 
stiffness commonly associated with malignancy [40]. Quantitative differences were also noted in attenuation, speed of 
sound, and velocity indices, with BI-RADS 4 lesions deviating signi�cantly from the more benign BI-RADS 3 pro�les [35]. 
Doppler assessments revealed more frequent abnormal vascular features in BI-RADS 4 lesions, supporting their use in 
enhancing diagnostic con�dence [27]. Texture-based QUS features showed greater heterogeneity in suspicious lesions, 
further contributing to lesion strati�cation. These quantitative differences highlight the potential of combining QUS with AI 
to re�ne BI-RADS classi�cation, particularly by identifying low-risk BI-RADS 4A lesions that may not require biopsy, thereby 
improved clinical decision-making and reducing unnecessary interventions [36] (Table 6). 

Table 6: Quantitative Ultrasound Parameters within (QUS) BI-RADS Categories 3 and 4

Parameter Clinical Insight

Attenuation and SoS

Strain elastography (mean
elasticity, Emean)

Velocity index (VI)

Doppler �ow (including
bidirectional �ow)

QUS texture/heterogeneity Homogeneous

BI-RADS 4 (Suspicious)

Lower (~3%)

Absent or minimal

BI-RADS 3 (Probably Benign)

Similar to benign pro�les

Lower (<4.5 kPa)

Shift toward malignant values

Higher (>30 kPa), Emax > 36 kPa

Higher (~5%)

>3 abnormal features detected 
~100% sensitivity, ~76% speci�city 

Heterogeneous

May aid in resolving indeterminate cases
(BI-RADS 4A)

Improves downgrading from BI-RADS 4A to 3,
reducing unnecessary biopsies

Supports differentiation between benign
and malignant lesions 

Enhances vascular assessment

Supports lesion characterization in
indeterminate BI-RADS categories 

A DL system trained on B-mode and Doppler US images signi�cantly improved diagnostic performance, achieving an internal 
AUC of 0.94 and an external AUC of 0.96, reducing false-positive rates by 7.6% and improving interobserver agreement. 
Google's AI model trained on over 288,000 US exams and 5.44 million images achieved AUROC values of 0.976 (internal) and 
0.927 (external), while reducing false-positive diagnoses by 37.3% and unnecessary biopsies by 27.8% [34-36] (Table 7). 

Table 7: Use of Arti�cial Intelligence in Breast Ultrasound Imaging for Diagnosis and Clinical Decision Support

References Setting and Sample AI Task Key Performance

[34]
Multivendor, multicenter; 45,909 B-mode +

Doppler images
Deep learning classi�cation; model-

assisted radiologist support
AUC 0.94 internal, 0.96 external; reduced false

positives by 7.6%; improved interobserver agreement

[35]
288,767 exams, 5.44 M images;

B-mode and Doppler
AI vs radiologists; reader aid

AUROC 0.976 internal, 0.927 external; reduced false
positives 37.3%, reduced biopsies 27.8%

[36]
4,998 patients: comparison of CNN

architectures and resolutions
CNN model vs senior sonographers

Best AUC 0.924 (MobileNet_224), accuracy 87.3%;
outperformed senior US readers

D I S C U S S I O N

performance comparable to, or exceeding, that of expert 
radiologists [26, 34–36]. Large-scale validation studies 
provide the most compelling evidence. The Google AI 
model, trained on 288,767 exams comprising 5.44 million 
images, achieved AUROC values of 0.976 (internal) and 
0.927 (external), showing robust generalizability. It reduced 

The integration of arti�cial intelligence (AI) into breast 
ultrasound (US) imaging marks a major advancement in 
diagnostic radiology, consistently improving accuracy, 
e�ciency, and clinical decision-making [1–3]. AI systems 
employing deep learning (DL) and convolutional neural 
n e t wo r k s  ( C N N s )  n ow  d e m o n s t r a t e  d i a g n o s t i c 
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false-positive interpretations by 37.3% and unnecessary 
biopsies by 27.8%, addressing one of the main drawbacks 
of conventional US high false-positive rates leading to 
patient anxiety and increased healthcare costs [4-5]. This 
underscores AI's role as both an educational aid and a 
quality assurance tool. Recent developments have 
extended AI capabilities beyond binary classi�cation. 
Transfer learning using pre-trained models such as 
ImageNet and �ne-tuning them for breast US enables high 
accuracy even with smaller datasets [12-13]. Transformer-
based architectures, such as HoVer-Trans, outperform 
traditional CNNs and expert sonographers by capturing 
long-range dependencies critical for interpreting complex 
breast tissue patterns [33]. Explainability features such as 
saliency maps and attention mechanisms help mitigate the 
“black box” criticism of AI systems [17]. The integration of 
quantitative ultrasound (QUS) parameters with AI 
represents another promising direction [34–38]. QUS 
provides measurable tissue characteristics—such as 
attenuation, speed of sound, and spectral features that 
distinguish benign from malignant lesions. When 
combined with AI, diagnostic accuracy improves markedly, 
with reported AUC values up to 0.97 [34–37]. Incorporating 
elastography further re�nes BI-RADS classi�cation: 
lesions with Emean >30 kPa or Emax >36 kPa correlate 
strongly with malignancy in BI-RADS 4 cases [37-38]. AI-
assisted reclassi�cation of low-risk BI-RADS 4A lesions 
could reduce unnecessary biopsies by 15–18% while 
maintaining sensitivity. AI has also expanded access to 
quality breast imaging in resource-limited settings. AI-
assisted portable US devices operated by minimally trained 
personnel  achieved 96–98% sensit iv ity  in  rural 
populations, approaching expert performance. However, 
speci�city varied (38–67%) due to differences in device 
q u a l i t y  a n d  o p e rato r  s k i l l  [ 2 9 ,  3 6 ] .  A I - a ss i ste d 
interpretation bene�ts radiologists of all experience levels, 
with the greatest impact seen among less experienced 
readers. Benign biopsy rates decreased from 52% to 33% 
for junior and from 46% to 34% for senior radiologists when 
using AI support [39]. Successful deployment requires 
robust algorithms, standardized imaging protocols, quality 
assurance, and local training programs [36, 37]. 
Smartphone-based AI tools further enhance accessibility. 
Deep learning models deployed on mobile devices achieved 
100% sensitivity and 97.5% speci�city for lesion detection 
[24], enabling rapid triage in primary care and reducing 
specialist workload. Despite encouraging progress, 
challenges persist. Dataset diversity and generalizability 
remain major concerns, as most models are trained on data 
from single institutions or homogeneous populations 
[17–20]. Although some studies demonstrated external 
validation with an AUROC of 0.927 on diverse populations 
[3], comprehensive cross-population evaluation remains 

C O N C L U S I O N

This  review demonstrates that AI, particularly deep 

learning-based approaches, signi�cantly enhances breast 

US imaging for cancer diagnosis and clinical decision 

support. AI systems consistently achieve high diagnostic 

accuracy with AUC values ranging from 0.92 to 0.98, often 

matching or exceeding expert radiologist performance. 

Critically, AI integration reduces false-positive rates by up 

to 37% and unnecessary biopsies by approximately 28%, 

addressing major l imitations of conventional US 

interpretation. Beyond diagnostic accuracy, AI provides 

several clinical bene�ts: (1) improved inter-reader and 

intra-reader consistency, reducing interpretation 

variability; (2) enhanced performance across reader 

experience levels, with particularly pronounced bene�ts 
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limited. Model interpretability, while improving, is still 
insu�cient for full clinical adoption. Since radiologists 
bear ultimate diagnostic responsibility, AI predictions must 
be transparent and explainable [17-18]. Regulatory 
approval, work�ow integration, and interoperability with 
radiology information systems (RIS) and picture archiving 
and communication systems (PACS) also pose barriers 
[10,19]. Most current models remain focused on binary 
classi�cation (benign vs. malignant) [19–21], whereas 
comprehensive breast cancer management requires AI 
tools capable of risk strati�cation, molecular subtype 
prediction, lymph node assessment, and treatment 
response monitoring [21–25]. However, signi�cant 
challenges remain. Dataset diversity and external 
validation across heterogeneous populations require 
attention to ensure generalizability. Model interpretability 
must improve to foster clinical trust and meet regulatory 
requirements. Clinical work�ow integration, cost-
effectiveness evaluation, and prospective validation 
through randomized controlled trials are necessary before 
widespread implementation. Additionally, expanding AI 
capabilities beyond binary classi�cation to address multi-
task clinical needs, including molecular subtyping, 
treatment response prediction, and surgical planning, 
represents an important frontier. The evidence supports AI 
as a valuable adjunct tool that augments rather than 
replaces radiologist expertise. Optimal implementation 
likely involves human-AI collaboration, where AI serves as a 
consistent "second reader," quality assurance mechanism, 
and decision support tool. Continued research addressing 
technical limitations, validation in diverse settings, and 
practical implementation strategies will determine 
whether AI's promise translates into improved breast 
cancer outcomes globally. With thoughtful development 
emphasizing clinical utility, interpretability, and equitable 
access, AI has substantial potential to transform breast US 
imaging and enhance patient care.
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